The L^q-spectrum of dynamically driven self-similar measures in arbitrary dimension

Emilio Corso (joint with Pablo Shmerkin)

Pennsylvania State University

One World Fractals

September 20, 2023

・ 同 ト ・ ヨ ト ・ ヨ ト

A recurring theme in fractal geometry is the investigation of various notions of **dimensions** for **sets** and **measures** of dynamical, arithmetic or geometric origin.

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

A recurring theme in fractal geometry is the investigation of various notions of **dimensions** for **sets** and **measures** of dynamical, arithmetic or geometric origin.

We shall here focus on measures. The **multifractal structure** of a Borel probability measure μ on \mathbb{R}^d is conveniently described by its

L^q-spectrum.

イロト イヨト イヨト ニヨー うへつ

A recurring theme in fractal geometry is the investigation of various notions of **dimensions** for **sets** and **measures** of dynamical, arithmetic or geometric origin.

We shall here focus on measures. The **multifractal structure** of a Borel probability measure μ on \mathbb{R}^d is conveniently described by its

L^q-spectrum.

For every integer $m \ge 1$, let $\mathcal{D}_m = \{2^{-m}(k + [0, 1)^d) : k \in \mathbb{Z}^d\}$. The probability vector $(\mu(Q))_{Q \in \mathcal{D}_m}$ describes how the mass of μ is distributed among cubes of the *m*-th generation: its *moments* $\sum_{Q \in \mathcal{D}_m} \mu(Q)^q$, $q \in \mathbb{R}_{>1}$, provide an indication as to how close the vector is to being **uniform** $(\mu(Q) = \mu(Q')$ for all Q, Q') or **trivial** $(\mu(Q) = 1$ for some Q).

L^q -spectrum and L^q -dimension

Specifically, if μ is supported inside $[0,1]^d$,

$$2^{-\mathit{md}(q-1)} \leq \sum_{Q \in \mathcal{D}_m} \mu(Q)^q \leq 1 \; ,$$

with equality only occurring in the previous two extreme cases.

(日本) (日本) (日本) 日本

L^q -spectrum and L^q -dimension

Specifically, if μ is supported inside $[0, 1]^d$,

$$2^{-\mathit{md}(q-1)} \leq \sum_{Q\in\mathcal{D}_m} \mu(Q)^q \leq 1 \; ,$$

with equality only occurring in the previous two extreme cases.

This motivates the following definitions: the L^q -spectrum of μ is the function $\tau_{\mu} \colon \mathbb{R}_{>1} \to \mathbb{R}_{\geq 0}$ defined as

$$au_{\mu}(q) = \liminf_{m o \infty} - rac{\log \sum_{Q \in \mathcal{D}_m} \mu(Q)^q}{m} , \quad q > 1.$$

Convention: all logarithms are to the base 2.

L^q -spectrum and L^q -dimension

Specifically, if μ is supported inside $[0,1]^d$,

$$2^{-md(q-1)} \leq \sum_{Q \in \mathcal{D}_m} \mu(Q)^q \leq 1 \; ,$$

with equality only occurring in the previous two extreme cases.

This motivates the following definitions: the L^q -spectrum of μ is the function $\tau_{\mu} \colon \mathbb{R}_{>1} \to \mathbb{R}_{\geq 0}$ defined as

$$au_{\mu}(q) = \liminf_{m o \infty} - rac{\log \sum_{Q \in \mathcal{D}_m} \mu(Q)^q}{m} \ , \quad q > 1.$$

Convention: all logarithms are to the base 2.

The L^q -dimension of μ is

$$\dim_\mu(q)=rac{ au_\mu(q)}{q-1}\ ,\quad q>1.$$

Self-similar measures

Much interest revolves around **invariant measures** for **iterated function systems**. As a motivation for our setting, let us examine the **homogeneous self-similar** case.

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Self-similar measures

Much interest revolves around **invariant measures** for **iterated function systems**. As a motivation for our setting, let us examine the **homogeneous self-similar** case.

Let $\Phi = (f_i)_{i \in I}$ be a homogeneous self-similar iterated function system (IFS) on \mathbb{R}^d : I is a finite set,

$$f_i(x) = \lambda h(x) + a_i , \quad x \in \mathbb{R}^d$$

for some $\lambda \in (0, 1)$, $h \in SO_d(\mathbb{R})$, $a_i \in \mathbb{R}^d$ for $1 \le i \le d$.

→ 伺 → → ヨ → → ヨ → の Q (や

Self-similar measures

Much interest revolves around **invariant measures** for **iterated function systems**. As a motivation for our setting, let us examine the **homogeneous self-similar** case.

Let $\Phi = (f_i)_{i \in I}$ be a homogeneous self-similar iterated function system (IFS) on \mathbb{R}^d : I is a finite set,

$$f_i(x) = \lambda h(x) + a_i$$
, $x \in \mathbb{R}^d$

for some $\lambda \in (0,1)$, $h \in SO_d(\mathbb{R})$, $a_i \in \mathbb{R}^d$ for $1 \le i \le d$.

Given a probability vector $p = (p_i)_{i \in I}$, let μ be the self-similar measure determined by Φ and p, namely the unique Borel probability measure on \mathbb{R}^d satisfying

$$\mu = \sum_{i \in I} p_i f_i \mu ,$$

where $f_i \mu$ indicates the pushforward of μ by f_i .

Self-similar measures as infinite convolutions

The measure μ can be alternatively described as the law of the random infinite sum

$$\sum_{n\geq 0}\lambda^n h^n(Z_n) ,$$

where $(Z_n)_{n\geq 0}$ is a sequence of i.i.d. random variables with law $\Delta_0 = \sum_{i\in I} p_i \, \delta_{a_i}$. We write μ as the **infinite convolution**

$$\mu = *_{n\geq 0} S_{\lambda^n} h^n \Delta_0 ,$$

where $S_{\lambda^n}(x) = \lambda^n x$, $x \in \mathbb{R}^d$, $n \ge 0$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ のへで

Self-similar measures as infinite convolutions

The measure μ can be alternatively described as the law of the random infinite sum

$$\sum_{n\geq 0}\lambda^n h^n(Z_n) ,$$

where $(Z_n)_{n\geq 0}$ is a sequence of i.i.d. random variables with law $\Delta_0 = \sum_{i\in I} p_i \, \delta_{a_i}$. We write μ as the **infinite convolution**

$$\mu = *_{n\geq 0} S_{\lambda^n} h^n \Delta_0 ,$$

where $S_{\lambda^n}(x) = \lambda^n x$, $x \in \mathbb{R}^d$, $n \ge 0$.

The appearance of the iterates $h^n \Delta_0$ suggest the introduction of a **dynamical framework** driving the factors of the infinite convolution product.

We consider the following general setting: a **uniquely ergodic system** is a triple (X, T, P) where

- X is a compact metrizable topological space,
- $\blacktriangleright \ \textbf{T} \colon X \to X \text{ is a continuous transformation,}$
- **P** is the unique Borel probability measure on X satisfying TP = P.

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We consider the following general setting: a **uniquely ergodic system** is a triple (X, T, P) where

- X is a compact metrizable topological space,
- $\blacktriangleright \ \textbf{T} \colon X \to X \text{ is a continuous transformation,}$

P is the unique Borel probability measure on X satisfying TP = P.

A **pleasant model** in \mathbb{R}^d is a quintuple $\mathcal{X} = (X, \mathbf{T}, \mathbf{P}, \Delta, \lambda)$ where $(X, \mathbf{T}, \mathbf{P})$ is a uniquely ergodic system, $\lambda \in (0, 1)$ and

 $\Delta \colon \mathsf{X} \to \mathcal{A} = \{ \text{finitely supported Borel probability measures in } \mathbb{R}^d \}$

is a map with the following properties:

A general framework: dynamically driven s.-s. measures

Δ is measurable, and continuous P-almost everywhere, where A is endowed with the final topology for the maps
 Δ_k × (ℝ^d)^k → A, ((q_i)_{1≤i≤k}, (b_i)_{1≤i≤k}) ↦ ∑_{i=1}^k q_i δ_{b_i}, k ≥ 1, with Δ_k = {(q_i)_{1≤i≤k} ∈ (ℝ_{≥0})^k : ∑_i q_i = 1}

A general framework: dynamically driven s.-s. measures

- Δ is measurable, and continuous P-almost everywhere, where A is endowed with the final topology for the maps
 Δ_k × (ℝ^d)^k → A, ((q_i)_{1≤i≤k}, (b_i)_{1≤i≤k}) → ∑_{i=1}^k q_i δ_{b_i}, k ≥ 1, with Δ_k = {(q_i)_{1≤i≤k} ∈ (ℝ_{≥0})^k : ∑_i q_i = 1}
- there is an integer M ≥ 1 and a bounded set K ⊂ ℝ^d such that, for all x ∈ X, the support of Δ(x) is contained in K and consists of at most M points.

A general framework: dynamically driven s.-s. measures

- Δ is measurable, and continuous P-almost everywhere, where \mathcal{A} is endowed with the final topology for the maps $\Delta_k \times (\mathbb{R}^d)^k \to \mathcal{A}, \ ((q_i)_{1 \le i \le k}, (b_i)_{1 \le i \le k}) \mapsto \sum_{i=1}^k q_i \ \delta_{b_i}, \ k \ge 1,$ with $\Delta_k = \{(q_i)_{1 \le i \le k} \in (\mathbb{R}_{\ge 0})^k : \sum_i q_i = 1\}$
- there is an integer M ≥ 1 and a bounded set K ⊂ ℝ^d such that, for all x ∈ X, the support of Δ(x) is contained in K and consists of at most M points.

A pleasant model \mathcal{X} generates a collection $(\mu_x)_{x \in X}$ of **dynamically driven self-similar measures**, defined as

$$\mu_{\mathsf{x}} = *_{n \geq 0} \ S_{\lambda^n} \Delta(\mathbf{T}^n \mathsf{x}) \ , \quad \mathsf{x} \in \mathsf{X}.$$

L^q -spectrum and L^q -dimensions of a model

They satisfy the dynamical self-similarity relation

$$\mu_{\mathsf{x}} = \mu_{\mathsf{x},n} * S_{\lambda^n} \mu_{\mathbf{T}^n \mathsf{x}} , \quad \mathsf{x} \in \mathsf{X}, \ n \geq 1,$$

where the $\mu_{x,n} = *_{i=0}^{n-1} S_{\lambda^i} \Delta(\mathbf{T}^i \mathbf{x})$ are the level-*n* approximations.

L^q -spectrum and L^q -dimensions of a model

They satisfy the dynamical self-similarity relation

$$\mu_{\mathsf{x}} = \mu_{\mathsf{x},n} * S_{\lambda^n} \mu_{\mathbf{T}^n \mathsf{x}} , \quad \mathsf{x} \in \mathsf{X}, \ n \geq 1,$$

where the $\mu_{x,n} = *_{i=0}^{n-1} S_{\lambda i} \Delta(\mathbf{T}^i \mathbf{x})$ are the **level**-*n* approximations. Given a pleasant model \mathcal{X} , we define its L^q -spectrum and L^q -dimension, for every q > 1, as

$$egin{aligned} & \mathcal{T}_{\mathcal{X}}(q) = \liminf_{m o \infty} -rac{1}{m} \int_{\mathsf{X}} \log \sum_{Q \in \mathcal{D}_m} \mu_{\mathsf{X}}(Q)^q \; \mathsf{d}\mathbf{P}(\mathsf{X}) \; , \ & \mathcal{D}_{\mathcal{X}}(q) = rac{\mathcal{T}_{\mathcal{X}}(q)}{q-1} \; . \end{aligned}$$

→ 伺 → → ヨ → → ヨ → の Q (や

L^q -spectrum and L^q -dimensions of a model

They satisfy the dynamical self-similarity relation

$$\mu_{\mathsf{x}} = \mu_{\mathsf{x},n} \ast S_{\lambda^n} \mu_{\mathbf{T}^n \mathsf{x}} , \quad \mathsf{x} \in \mathsf{X}, \ n \geq 1,$$

where the $\mu_{x,n} = *_{i=0}^{n-1} S_{\lambda i} \Delta(\mathbf{T}^i x)$ are the level-*n* approximations. Given a pleasant model \mathcal{X} , we define its L^q -spectrum and L^q -dimension, for every q > 1, as

$$egin{aligned} & \mathcal{T}_{\mathcal{X}}(q) = \liminf_{m o \infty} -rac{1}{m} \int_{\mathsf{X}} \log \sum_{Q \in \mathcal{D}_m} \mu_{\mathsf{X}}(Q)^q \; \mathsf{d}\mathbf{P}(\mathsf{x}) \; , \ & D_{\mathcal{X}}(q) = rac{\mathcal{T}_{\mathcal{X}}(q)}{q-1} \; . \end{aligned}$$

As a consequence of Kingman's subadditive ergodic theorem, the previous are actual limits and, for P-almost every $x \in X$,

$$au_{\mu_{\mathrm{x}}}(q) = \mathcal{T}_{\mathcal{X}}(q) \ , \quad \dim_{\mu_{\mathrm{x}}}(q) = \mathcal{D}_{\mathcal{X}}(q) \quad ext{for every } q > 1.$$

Combinatorial upper bound for the L^{q} -dimension

A combinatorial, general upper bound for $D_{\mathcal{X}}(q)$ is readily given.

Combinatorial upper bound for the L^q-dimension

A combinatorial, general upper bound for $D_{\mathcal{X}}(q)$ is readily given. Define, for every integer $m \ge 1$, the level-*m* discretization

$$\mu_{\mathsf{x}}^{(m)} = \sum_{k \in \mathbb{Z}^d} \mu(2^{-m}(k + [0, 1)^d)) \, \delta_{2^{-m}k} \; ,$$

so that

$$\tau_{\mu_{x}}(q) = \liminf_{m \to \infty} - \frac{\log \left\| \mu_{x}^{(m)} \right\|_{q}^{q}}{m}$$

where $\left\| \sum_{j \in J} p_{j} \, \delta_{j} \right\|_{q}^{q} = \sum_{j \in J} p_{j}^{q}$.

(日) (周) (ヨ) (ヨ) (ヨ)

Combinatorial upper bound for the L^q-dimension

A combinatorial, general upper bound for $D_{\mathcal{X}}(q)$ is readily given. Define, for every integer $m \ge 1$, the level-*m* discretization

$$\mu_{\mathsf{x}}^{(m)} = \sum_{k \in \mathbb{Z}^d} \mu(2^{-m}(k + [0, 1)^d)) \, \delta_{2^{-m}k} \; ,$$

so that

$$\tau_{\mu_{\mathsf{x}}}(q) = \liminf_{m \to \infty} - \frac{\log \left\| \mu_{\mathsf{x}}^{(m)} \right\|_{q}^{q}}{m}$$

where $\left\| \sum_{j \in J} p_{j} \, \delta_{j} \right\|_{q}^{q} = \sum_{j \in J} p_{j}^{q}.$
Set also $m(n) = \inf\{m \ge 1: 2^{-m} \le \lambda^{n}\}.$

Combinatorial upper bound for the L^q-dimension

A combinatorial, general upper bound for $D_{\mathcal{X}}(q)$ is readily given. Define, for every integer $m \ge 1$, the level-*m* discretization

$$\mu_{\mathsf{x}}^{(m)} = \sum_{k \in \mathbb{Z}^d} \mu(2^{-m}(k + [0, 1)^d)) \, \delta_{2^{-m}k} \; ,$$

so that

$$\tau_{\mu_{\mathsf{x}}}(q) = \liminf_{m \to \infty} - \frac{\log \left\| \mu_{\mathsf{x}}^{(m)} \right\|_{q}^{q}}{m}$$

where $\left\| \sum_{j \in J} p_{j} \, \delta_{j} \right\|_{q}^{q} = \sum_{j \in J} p_{j}^{q}$.
Set also $m(n) = \inf\{m \ge 1 : 2^{-m} \le \lambda^{n}\}$. For every $\mathsf{x} \in \mathsf{X}$,

$$\dim_{\mu_{\mathsf{x}}}(q) = \lim_{n \to \infty} -\frac{\log \left\| \mu_{\mathsf{x},n}^{(m(n))} \right\|_{q}}{(q-1)m(n)} \le \lim_{n \to \infty} -\frac{\log \left\| \mu_{\mathsf{x},n} \right\|_{q}^{q}}{(q-1)m(n)}$$
$$\lim_{n \to \infty} -\frac{\log \prod_{i=0}^{n-1} \left\| \Delta(\mathbf{T}^{i}\mathsf{x}) \right\|_{q}^{q}}{(q-1)m(n)} \le \frac{\int_{\mathsf{X}} \log \left\| \Delta(\mathsf{y}) \right\|_{q}^{q} \, \mathrm{d}\mathbf{P}(\mathsf{y})}{(q-1)\log\lambda} =: D_{\mathcal{X}}^{\mathsf{s}}(q) \,.$$

Question

When does a strict inequality $D_{\mathcal{X}}(q) < \min\{D_{\mathcal{X}}^{s}(q), d\}$ occur?

Question

When does a strict inequality $D_{\mathcal{X}}(q) < \min\{D^{s}_{\mathcal{X}}(q), d\}$ occur?

Let's consider self-similar measures. For any $d \ge 1$, exact overlaps may result in a trivial dimension drop, as the measure is represented by a proper subset of some iterate Φ^k .

Question

When does a strict inequality $D_{\mathcal{X}}(q) < \min\{D_{\mathcal{X}}^{s}(q), d\}$ occur?

Let's consider self-similar measures. For any $d \ge 1$, **exact overlaps** may result in a trivial dimension drop, as the measure is represented by a proper subset of some iterate Φ^k . For d > 1, **affine reducibility** of Φ may further produce a trivial dimension drop, if $D^s_{\mathcal{X}}(q) > d - 1$.

Question

When does a strict inequality $D_{\mathcal{X}}(q) < \min\{D_{\mathcal{X}}^{s}(q), d\}$ occur?

Let's consider self-similar measures. For any $d \ge 1$, exact overlaps may result in a trivial dimension drop, as the measure is represented by a proper subset of some iterate Φ^k . For d > 1, affine reducibility of Φ may further produce a trivial dimension drop, if $D^s_{\mathcal{X}}(q) > d - 1$. Even allowing for the occurrence of such degeneracies is not sufficient. Let μ_1 be a Bernoulli convolution on \mathbb{R} of parameter $\lambda > 1/2$ satisfying exponential separation, μ_2 the standard Cantor-Lebesgue measure on the middle- λ^k Cantor set, where $\lambda^k < 1/2$, and let $\mu = \mu_1 \times \mu_2$. Then

$$egin{aligned} \dim_\mu(q) &= \dim_{\mu_1}(q) + \dim_{\mu_2}(q) = 1 + \dim_{\mu_2}(q) < \min\{\dim_\mu^s(q), 2\} \ &= \min\{\dim_{\mu_1}^s(q) + \dim_{\mu_2}^s(q), 2\} \end{aligned}$$

Forbidding overlaps and saturation on lines

In the latter example, the measure μ is **saturated** on translates of the line $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$, where **excess dimension** is accumulated.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

In the latter example, the measure μ is **saturated** on translates of the line $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$, where **excess dimension** is accumulated. We thus reformulate the question ruling out *super-exponentially close overlaps* and *saturation on lines*.

In the latter example, the measure μ is **saturated** on translates of the line $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$, where **excess dimension** is accumulated. We thus reformulate the question ruling out *super-exponentially close overlaps* and *saturation on lines*.

A pleasant model X satisfies **exponential separation** if, for **P**-almost every $x \in X$, there is c > 0 and a subsequence $(n_j)_{j \ge 1}$ such that the atoms of $\mu_{x,n_j} = *_{i=0}^{n_j-1} S_{\lambda^i} \Delta(\mathbf{T}^i \mathbf{x})$ are *distinct* and c^{n_j} -separated.

In the latter example, the measure μ is **saturated** on translates of the line $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$, where **excess dimension** is accumulated. We thus reformulate the question ruling out *super-exponentially close overlaps* and *saturation on lines*.

A pleasant model X satisfies exponential separation if, for P-almost every $x \in X$, there is c > 0 and a subsequence $(n_j)_{j\geq 1}$ such that the atoms of $\mu_{x,n_j} = *_{i=0}^{n_j-1} S_{\lambda^i} \Delta(\mathbf{T}^i x)$ are *distinct* and c^{n_j} -separated. For any $\pi \in \mathbb{G}(d, d-1)$, the Grassmannian of (d-1)-dimensional linear subspaces of \mathbb{R}^d , let $\pi \mathcal{X} = (X, \mathbf{T}, \mathbf{P}, \pi \Delta, \lambda)$. We say that \mathcal{X} is *q*-unsaturated on lines for some q > 1 if

$$D_{\pi\mathcal{X}}(q) > D_{\mathcal{X}}(q) - 1 \quad ext{for every } \pi \in \mathbb{G}(d,d-1) \ .$$

Theorem (C.-Shmerkin, 2023)

Let \mathcal{X} be a pleasant model in \mathbb{R}^d , generating $(\mu_x)_{x \in X}$. Assume that X satisfies exponential separation and is q-unsaturated on lines for some q > 1. Then

$$\lim_{m \to \infty} -\frac{1}{(q-1)m} \log \left\| \mu_{\mathsf{x}}^{(m)} \right\|_{q}^{q} = \frac{\int_{\mathsf{X}} \log \left\| \Delta \right\|_{q}^{q} \, \mathrm{d}\mathbf{P}}{(q-1) \log \lambda} \tag{1}$$

uniformly in $x \in X$. In particular, the limit in the definition of dim_{μ_x}(q) exists and equals the right-hand side of (1) for every $x \in X$.

Theorem (C.-Shmerkin, 2023)

Let \mathcal{X} be a pleasant model in \mathbb{R}^d , generating $(\mu_x)_{x \in X}$. Assume that X satisfies exponential separation and is q-unsaturated on lines for some q > 1. Then

$$\lim_{m \to \infty} -\frac{1}{(q-1)m} \log \left\| \mu_{\mathsf{x}}^{(m)} \right\|_{q}^{q} = \frac{\int_{\mathsf{X}} \log \left\| \Delta \right\|_{q}^{q} \, \mathrm{d}\mathbf{P}}{(q-1) \log \lambda} \tag{1}$$

uniformly in $x \in X$. In particular, the limit in the definition of dim_{μ_x}(q) exists and equals the right-hand side of (1) for every $x \in X$.

This encompasses the case d = 1 (Shmerkin, 2019), where only exponential separation is needed: *q*-unsaturation amounts to $D_{\mathcal{X}}(q) < 1$, in the absence of which dim_{$\mu_x}(q) = 1$ holds tautologically.</sub>

Application: L^q -dimensions of self-similar measures

Let's explore the consequences for the self-similar case.

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Application: L^q-dimensions of self-similar measures

Let's explore the consequences for the self-similar case.

An IFS $\Phi = (f_i)_{i \in I}$, generating a homogeneous self-similar measure $\mu = *_{n \geq 0} S_{\lambda^n} h^n \Delta_0$, satisfies **exponential separation** if, for some c > 0 and a subsequence $(n_j)_{j \geq 1}$, the atoms of $*_{i=0}^{n_j-1} S_{\lambda^i} h^i \Delta_0$ are distinct and c^{n_j} -separated for all $j \geq 1$.

Application: L^q-dimensions of self-similar measures

Let's explore the consequences for the self-similar case.

An IFS $\Phi = (f_i)_{i \in I}$, generating a homogeneous self-similar measure $\mu = *_{n \geq 0} S_{\lambda^n} h^n \Delta_0$, satisfies **exponential separation** if, for some c > 0 and a subsequence $(n_j)_{j \geq 1}$, the atoms of $*_{i=0}^{n_j-1} S_{\lambda^i} h^i \Delta_0$ are distinct and c^{n_j} -separated for all $j \geq 1$. The measure μ is *q*-unsaturated on lines for some q > 1 if

 $\dim_{\pi\mu}(q) > \dim_{\mu}(q) - 1 \quad ext{for all } \pi \in \mathbb{G}(d, d-1) \; .$

Application: L^q-dimensions of self-similar measures

Let's explore the consequences for the self-similar case.

An IFS $\Phi = (f_i)_{i \in I}$, generating a homogeneous self-similar measure $\mu = *_{n \geq 0} S_{\lambda^n} h^n \Delta_0$, satisfies **exponential separation** if, for some c > 0 and a subsequence $(n_j)_{j \geq 1}$, the atoms of $*_{i=0}^{n_j-1} S_{\lambda^i} h^i \Delta_0$ are distinct and c^{n_j} -separated for all $j \geq 1$. The measure μ is *q*-unsaturated on lines for some q > 1 if

$$\dim_{\pi\mu}(q) > \dim_{\mu}(q) - 1 \quad ext{for all } \pi \in \mathbb{G}(d, d-1) \; .$$

Corollary

Let μ be a homogeneous self-similar measure in \mathbb{R}^d generated by an IFS Φ and a probability vector p. Assume Φ satisfies exponential separation and μ is q-unsaturated on lines for some q > 1. Then

$$\dim_{\mu}(q) = \dim_{\mu}^{s}(q) = rac{\log \|p\|_{q}^{q}}{(q-1)\log \lambda}$$

Deduction from the main theorem

Write $\Phi = (f_i)_{i \in I}$, $f_i(x) = \lambda h(x) + a_i$, $x \in \mathbb{R}^d$. It suffices to apply the theorem to $(X, \mathbf{T}, \mathbf{P}, \Delta, \lambda)$ given as follows:

▶ X is the closure in $SO_d(\mathbb{R})$ of the cyclic subgroup generated by *h*;

T :
$$X \rightarrow X$$
 is translation by *h*;

P is the probability Haar measure on X;

•
$$\Delta(g) = g\left(\sum_{i \in I} p_i \, \delta_{a_i}\right), g \in X.$$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ● ●

Deduction from the main theorem

Write $\Phi = (f_i)_{i \in I}$, $f_i(x) = \lambda h(x) + a_i$, $x \in \mathbb{R}^d$. It suffices to apply the theorem to $(X, \mathbf{T}, \mathbf{P}, \Delta, \lambda)$ given as follows:

▶ X is the closure in $SO_d(\mathbb{R})$ of the cyclic subgroup generated by *h*;

• **T** :
$$X \rightarrow X$$
 is translation by *h*;

P is the probability Haar measure on X;

•
$$\Delta(g) = g\left(\sum_{i \in I} p_i \delta_{a_i}\right), g \in X.$$

We then have $\mu_g = g\mu$ for every $g \in X$. As every $g \in X$ is an isometry, exponential separation and *q*-unsaturation for X are **inherited** from the corresponding properties for μ .

Deduction from the main theorem

Write $\Phi = (f_i)_{i \in I}$, $f_i(x) = \lambda h(x) + a_i$, $x \in \mathbb{R}^d$. It suffices to apply the theorem to $(X, \mathbf{T}, \mathbf{P}, \Delta, \lambda)$ given as follows:

▶ X is the closure in $SO_d(\mathbb{R})$ of the cyclic subgroup generated by *h*;

• **T** :
$$X \rightarrow X$$
 is translation by *h*;

P is the probability Haar measure on X;

•
$$\Delta(g) = g\left(\sum_{i \in I} p_i \delta_{a_i}\right), g \in X.$$

We then have $\mu_g = g\mu$ for every $g \in X$. As every $g \in X$ is an isometry, exponential separation and *q*-unsaturation for X are **inherited** from the corresponding properties for μ .

Unique ergodicity is a general feature of **translations on compact abelian groups** by elements generating a **dense cyclic** subgroup.

Remark: in the super-critical regime dim^s_{μ}(q) > d, it is expected under favourable circumstances that dim_{μ}(q) = d;

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Remark: in the super-critical regime $\dim_{\mu}^{s}(q) > d$, it is expected under favourable circumstances that $\dim_{\mu}(q) = d$; however, this automatically rules out *q*-unsaturation.

(日) (周) (ヨ) (ヨ) (ヨ)

Remark: in the super-critical regime $\dim_{\mu}^{s}(q) > d$, it is expected under favourable circumstances that $\dim_{\mu}(q) = d$; however, this automatically rules out *q*-unsaturation. The issue is taken care of by thinning the driving model \mathcal{X} into a new pleasant model \mathcal{X}^{th} satisfying $D_{\mathcal{X}^{th}}(q) \leq D_{\mathcal{X}}(q)$ and with $d > D_{\mathcal{X}^{th}}^{s}(q)$ arbitrarily close to *d*. Applying the theorem to \mathcal{X}^{th} , for which *q*-unsaturation has a chance of holding, yields $\dim_{\mu}(q) = D_{\mathcal{X}}(q) = d$.

Remark: in the super-critical regime $\dim_{\mu}^{s}(q) > d$, it is expected under favourable circumstances that $\dim_{\mu}(q) = d$; however, this automatically rules out *q*-unsaturation. The issue is taken care of by thinning the driving model \mathcal{X} into a new pleasant model \mathcal{X}^{th} satisfying $D_{\mathcal{X}^{\text{th}}}(q) \leq D_{\mathcal{X}}(q)$ and with $d > D_{\mathcal{X}^{\text{th}}}^{s}(q)$ arbitrarily close to *d*. Applying the theorem to \mathcal{X}^{th} , for which *q*-unsaturation has a chance of holding, yields $\dim_{\mu}(q) = D_{\mathcal{X}}(q) = d$. Here is an application to the planar case.

Corollary

Let Φ be a homogeneous self-similar IFS in \mathbb{R}^2 as above. Assume h is an irrational rotation and Φ satisfies exponential separation. Then, for every vector p and every q > 1, the s.-s. m. μ generated by (Φ, p) satisfies

 $\dim_{\mu}(q) = \min \left\{ \dim_{\mu}^{s}(q), 2 \right\} \,.$

< ロ > < 同 > < 回 > < 回 >

э.

Remark: when $h = id_{\mathbb{R}^2}$, the result **fails**, as in the counterexample of a product measure $\mu = \mu_1 \times \mu_2$ discussed above.

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Remark: when $h = id_{\mathbb{R}^2}$, the result **fails**, as in the counterexample of a product measure $\mu = \mu_1 \times \mu_2$ discussed above.

If $h \neq id_{\mathbb{R}^2}$ is a rational rotation, we believe the result should still hold, but are currently unable to show it.

Remark: when $h = id_{\mathbb{R}^2}$, the result **fails**, as in the counterexample of a product measure $\mu = \mu_1 \times \mu_2$ discussed above.

If $h \neq id_{\mathbb{R}^2}$ is a rational rotation, we believe the result should still hold, but are currently unable to show it.

The proof in a nutshell: when dim^s_µ(q) < 2, q-unsaturation holds for the following reason. For any $\pi \in \mathbb{G}(2, 1)$, the one-dimensional model $\pi \mathcal{X}$ satisfies exponential separation, so that $D_{\pi \mathcal{X}}(q) = \min\{D^s_{\pi \mathcal{X}}(q), 1\}$. Irrationality of *h* implies $D^s_{\pi \mathcal{X}}(q) = D^s_{\mathcal{X}}(q)$, whence

$$D_{\pi\mathcal{X}}(q) > D^s_{\mathcal{X}}(q) - 1 \ge D_{\mathcal{X}}(q) - 1$$
.

Remark: when $h = id_{\mathbb{R}^2}$, the result **fails**, as in the counterexample of a product measure $\mu = \mu_1 \times \mu_2$ discussed above.

If $h \neq id_{\mathbb{R}^2}$ is a rational rotation, we believe the result should still hold, but are currently unable to show it.

The proof in a nutshell: when dim^s_µ(q) < 2, q-unsaturation holds for the following reason. For any $\pi \in \mathbb{G}(2, 1)$, the one-dimensional model $\pi \mathcal{X}$ satisfies exponential separation, so that $D_{\pi \mathcal{X}}(q) = \min\{D^s_{\pi \mathcal{X}}(q), 1\}$. Irrationality of *h* implies $D^s_{\pi \mathcal{X}}(q) = D^s_{\mathcal{X}}(q)$, whence

$$D_{\pi\mathcal{X}}(q) > D^s_{\mathcal{X}}(q) - 1 \geq D_{\mathcal{X}}(q) - 1$$
.

Such strategy of **projecting** and **inducting on the dimension** can be implemented in higher dimensions.

We go back to the main theorem, and illustrate the overarching strategy of the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

We go back to the main theorem, and illustrate the overarching strategy of the proof. Recall

$$\begin{split} \dim_{\mu_{\mathsf{x}}}(q) &= \lim_{n \to \infty} -\frac{\log \left\| \mu_{\mathsf{x},n}^{(m(n))} \right\|_{q}^{q}}{(q-1)m(n)} \leq \lim_{n \to \infty} -\frac{\log \prod_{i=0}^{n-1} \left\| \Delta(\mathsf{T}^{i}\mathsf{x}) \right\|_{q}^{q}}{(q-1)m(n)} \\ &= \frac{\int_{\mathsf{X}} \log \left\| \Delta(\mathsf{y}) \right\|_{q}^{q} \, \mathrm{d} \mathsf{P}(\mathsf{y})}{(q-1) \log \lambda} \;, \end{split}$$

holding for **P**-almost every $x \in X$.

< 回 > < 三 > < 三 >

We go back to the main theorem, and illustrate the overarching strategy of the proof. Recall

$$\begin{split} \dim_{\mu_{\mathsf{x}}}(q) &= \lim_{n \to \infty} -\frac{\log \left\| \mu_{\mathsf{x},n}^{(m(n))} \right\|_{q}^{q}}{(q-1)m(n)} \leq \lim_{n \to \infty} -\frac{\log \prod_{i=0}^{n-1} \left\| \Delta(\mathsf{T}^{i}\mathsf{x}) \right\|_{q}^{q}}{(q-1)m(n)} \\ &= \frac{\int_{\mathsf{X}} \log \left\| \Delta(\mathsf{y}) \right\|_{q}^{q} \, \mathrm{d} \mathsf{P}(\mathsf{y})}{(q-1) \log \lambda} \;, \end{split}$$

holding for **P**-almost every $x \in X$. Fix such an x for which exponential separation holds; then, for some sufficiently large integer $R \ge 1$,

$$\left\|\mu_{\mathbf{x},n}^{(Rm(n))}\right\|_{q}^{q} = \left\|\mu_{\mathbf{x},n}\right\|_{q}^{q} = \prod_{i=0}^{n-1} \left\|\Delta(\mathbf{T}^{i}\mathbf{x})\right\|_{q}^{q} .$$

э.

We go back to the main theorem, and illustrate the overarching strategy of the proof. Recall

$$\begin{split} \dim_{\mu_{\mathsf{x}}}(q) &= \lim_{n \to \infty} - \frac{\log \left\| \mu_{\mathsf{x},n}^{(m(n))} \right\|_{q}^{q}}{(q-1)m(n)} \leq \lim_{n \to \infty} - \frac{\log \prod_{i=0}^{n-1} \left\| \Delta(\mathsf{T}^{i}\mathsf{x}) \right\|_{q}^{q}}{(q-1)m(n)} \\ &= \frac{\int_{\mathsf{X}} \log \left\| \Delta(\mathsf{y}) \right\|_{q}^{q} \, \mathrm{d} \mathsf{P}(\mathsf{y})}{(q-1) \log \lambda} \;, \end{split}$$

holding for **P**-almost every $x \in X$. Fix such an x for which exponential separation holds; then, for some sufficiently large integer $R \ge 1$,

$$\left\|\mu_{\mathsf{x},n}^{(Rm(n))}\right\|_{q}^{q} = \left\|\mu_{\mathsf{x},n}\right\|_{q}^{q} = \prod_{i=0}^{n-1} \left\|\Delta(\mathsf{T}^{i}\mathsf{x})\right\|_{q}^{q}$$
.

It remains to show that $D_{\mathcal{X}}(q) = \lim_{n \to \infty} -\frac{\log \left\| \mu_{x,n}^{(Rm(n))} \right\|_q^q}{(q-1)m(n)}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

L^q -norm at finer scales via L^q -flattening

Inductively on $R \ge 1$: by dynamical self-similarity,

$$\left\|\mu_{\mathsf{x}}^{((R+1)m(n))}\right\|_{q}^{q} = \Theta_{q}(1) \left\|\mu_{\mathsf{x},n}^{((R+1)m(n))} * (S_{\lambda^{n}}\mu_{\mathbf{T}^{n}\mathsf{x}})^{((R+1)m(n))}\right\|_{q}^{q},$$

where now

$$\begin{split} & \left\| (S_{\lambda^{n}} \mu_{\mathbf{T}^{n_{\chi}}})^{((R+1)m(n))} \right\|_{q}^{q} = O_{\lambda,q}(1) \left\| \mu_{\mathbf{T}^{n_{\chi}}}^{(Rm(n))} \right\|_{q}^{q} = O_{\lambda,q}(1) 2^{-(\mathcal{T}_{\mathcal{X}}(q) - \delta)Rm(n)} \\ & \left\| \mu_{\chi}^{((R+1)m(n))} \right\|_{q}^{q} = \Omega_{\lambda,q}(1) 2^{-(\mathcal{T}_{\mathcal{X}}(q) + \delta)(R+1)m(n)} , \quad \delta > 0 \text{ fixed close to } 0. \end{split}$$

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ト ● ● ● ● ● ●

L^q -norm at finer scales via L^q -flattening

Inductively on $R \ge 1$: by dynamical self-similarity,

$$\left\|\mu_{\mathsf{x}}^{((R+1)m(n))}\right\|_{q}^{q} = \Theta_{q}(1) \left\|\mu_{\mathsf{x},n}^{((R+1)m(n))} * (S_{\lambda^{n}}\mu_{\mathbf{T}^{n_{\mathsf{x}}}})^{((R+1)m(n))}\right\|_{q}^{q},$$

where now

$$\begin{split} & \left\| (S_{\lambda^{n}} \mu_{\mathbf{T}^{n_{\chi}}})^{((R+1)m(n))} \right\|_{q}^{q} = O_{\lambda,q}(1) \left\| \mu_{\mathbf{T}^{n_{\chi}}}^{(Rm(n))} \right\|_{q}^{q} = O_{\lambda,q}(1) 2^{-(\mathcal{T}_{\mathcal{X}}(q) - \delta)Rm(n)} \\ & \left\| \mu_{\chi}^{((R+1)m(n))} \right\|_{q}^{q} = \Omega_{\lambda,q}(1) 2^{-(\mathcal{T}_{\mathcal{X}}(q) + \delta)(R+1)m(n)} , \quad \delta > 0 \text{ fixed close to } 0. \end{split}$$

Proposition (L^q -smoothening)

Suppose \mathcal{X} is q-unsaturated and $T_{\mathcal{X}}(q) < d(q-1)$. For every $\sigma > 0$, there exists $\varepsilon = \varepsilon(q, \sigma)$ such that, for every sufficiently large $m \in \mathbb{N}$, every 2^{-m} -measure satisfying $\|\nu\|_q^q \leq 2^{-\sigma m}$ and every $x \in X$,

$$\left\|\nu * \mu_{\mathsf{x}}^{(m)}\right\|_{q}^{q} \leq 2^{-(\mathcal{T}_{\mathcal{X}}(q) + \varepsilon)m}$$

Inverse theorem for L^q -norms of convolutions

Theorem (Shmerkin, 2023)

Let q > 1, $\delta > 0$. For every sufficiently large $D \in \mathbb{N}$ there is $\varepsilon > 0$ such that the following holds for every $\ell \ge \ell_0 \in \mathbb{N}$. Let $m = \ell D$, $\mu, \nu \ 2^{-m}$ measures in $[0,1)^d$ satisfying

$$\left\|\mu\ast\nu\right\|_{q}\geq2^{-\varepsilon m}\left\|\mu\right\|_{q}\;.$$

Then there exist $A \subset \text{supp } \mu$, $B \subset \text{supp } \nu$ and sequences $(R'_s)_{s \in [\ell]}$, $(R''_s)_{s \in [\ell]}$ $([\ell] = \{0, \ldots, \ell - 1\})$ of natural numbers such that

- $\blacktriangleright \ \|\mu|_A\|_q \geq 2^{-\delta m} \|\mu\|_q \text{ and } \mu(x) \leq 2\mu(y) \text{ for all } x, y \in A;$
- ▶ for all $s \in [\ell]$ and $Q \in \mathcal{D}_{sD}(A) = \{Q \in \mathcal{D}_{sD} : Q \cap A \neq \emptyset\},\$ $\mathcal{N}_{(s+1)D}(A \cap Q) = |\mathcal{D}_{(s+1)D}(A \cap Q)| = R'_s;$
- $\nu(B) \ge 2^{-\delta m}$ and $\nu(x) \le 2\nu(y)$ for all $x, y \in B$;
- for all $s \in [\ell]$ and $Q \in \mathcal{D}_{sD}(B)$, $\mathcal{N}_{(s+1)D}(B \cap Q) = R_s''$.

Moreover, for every $s \in [\ell]$, either $R''_s = 1$ or, for every $Q \in \mathcal{D}_{sD}(A)$, there is $\pi_Q \in \mathbb{G}(d, d-1)$ such that $\mathcal{N}_{(s+1)D}(A \cap Q) \ge 2^{(1-\delta)D} \mathcal{N}_{(s+1)D}(\pi_Q(A \cap Q))$.