ON THE SUBSTITUTION RULE

Week 3 small class

The following is a reminder from the last lecture, which dealt with the substitution rule for
integrals. If F f are functions such that

/f(x)dx:F(x)—i-C,

then, for every third function ¢,

/ F((@))@! () de = Fp(x)) + C

In concrete computations, the rule amounts to symbolically replacing ¢(x) by a new variable
u and ¢'(z) dz by du, so as to obtain

[ e do = [ ) du, withu=p(a).

In the upcoming three problems, we shall apply the substitution rule in combination with a
new technique, called partial fraction decomposition.

PrROBLEM A

(1) Which would you rather integrate?

A) /(xil_%cl—i—l)dx B) /(%;c_—zz_de

Solution. The first integral looks easier, but more importantly it is susceptible to a
technique we learned about in the large class. First, we separate the two summands in
the integral using the property of integrals discussed in the first small class:

1 | 1 1
_ Y S S . 1
/(x—l 2x+1)dx —— /2:1:+1dx (1)

To each summand, we now apply the substitution rule. For the first one, we set u = z—1,
so that du = (x — 1)’ de = dz, and thus

1 1
/ dx:/—du:log|u|+C’zlog]x—1|+C’. (2)
x—1 u

Similarly, for the second one we set u = 2x + 1, from which du = (22 4+ 1) dz = 2 dx,
that is, dz = % du. Hence

1 1 /1 1 1
/Qx—i—ldx 2/udu 5 oglu| +C 5 og 2z + 1|+ C (3)
Combining (1), (2) and (3), we obtain
1 1 1
— dr =1 — 1] — =z log|2 1 .
J (555 - i) ao = togle — 11— Jlog2e 11+ €

(2) What happens if we find a common denominator and add the fractions in integral A)?
Solution. We find that the integrals in A) and B) are the same. Indeed,
1 1 241l—(z—1) x+2

t—1 2z+1 (z—1Q2z+1) 222—z-1"
1
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[Takeaway| The integral in B) would be approachable but we need a way to “undo” finding
a common denominator. This method is called the method of partial fractions.

PrROBLEM B
(1) Consider [ mﬁ% dx. Start by supposing our function can be written in the follow-
ing way:
Tx + 13 A B
@x+m@—2y_m+5+x—2‘

Find A and B.

Solution. We have

A B Alx—-2)+B(2x+5) (A+2B)r+5B—-2A
2.2:+5+a:—2_ 2z +5)(z -2 (2o+5)(x-2)
As we want the latter to be equal to

Tr+13
(2x +5)(z —2)
for every x € R, we must equate the coefficients corresponding to monomials of the
same degree, whence we need to solve the linear system

{A+2B—7

5B —2A=13
The first equation gives A = 7 — 2B, which we can plug into the second equation,
thereby getting
5B —2(7—2B) =13, that is, 9B = 27,
which gives B = 3, whence A=7—-2-3=1.
Alternatively, we may observe that the equality
Alx —2)+ B2z +5) =Tz + 13

must be valid for every x € R; therefore, we may judiciously choose values of x which
simplify our search for A and B. For instance, taking x = 2 makes the summand
containing the factor A vanish, and yields

A-04+B(A+5)=T7-2+13=27,

which immediately gives B = 3. Likewise, taking = = —g makes the term containing
the factor B vanish:
5 5 9 9
Al —= =2 B-0=-7--+413, thatis, ——A=——
< 5 ) +B-0 7 5 + 13, that is, 5 5

and A = 1 follows.
[Takeaway| When doing partial fractions, selecting convenient values of x can sim-
plify your algebra.
(2) Compute the integral.

Solution. From the previous point, and the well-known property of the integral of a
sum of two functions, we have

Tx +13 1 1
dr = | ——do+3 dx .
/(2x+5)(w—2) ’ /2:1:—1—5 v /x—2 v

Substituting © = 2x + 5, du = 2 dz in the first integral, we get

1

1 1 1 1
de =< [ —du= =1 C = -log|2 5|+ C';
/2x+5 T 2/u u=g og |u| + 5 og |2z + 5|+ C;
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similarly, for the second integral, we substitute v = x — 2, du = dx and obtain

1 1
/ dx:/—du=10g|u|+0=log|x—2|+0.
T —2 u

Putting everything together, we conclude that

Tr +13 1
dxr = = log |2 1 —2 .
/(290—}—5)(95—2) T 2og|x+5|—|—i’>og|gc |+ C

[Takeaway| Write the big fraction as two simpler fractions and solve for the numer-
ator.

PROBLEM C

Compute [secz dz, by first transforming it into [ o5~ and then transforming the latter

into fﬁ du.

Solution. Recall the definition of the secant function: secz = ﬁ for every x € R for which
cosx # 0. Multiplying numerator and denominator by the non-zero quantity cosx, we get
secx = =5L  whence in particular

cos? )
COS T
secx dz = 5 dx .
cos? x

We now make use of the trigonometric identity
2

cos’z +sin®z =1,

valid for every x € R, in order to derive

coslz =1—sin’z.

CcosS &
1 —sin“x

Substituting u = sin x, which yields du = (sinz) dz = cosx dx, we see that the latter indefinite
integral is precisely equal to
! d
Uu Y
1—wu?

which in turn can be approached via the partial-fraction decomposition technique learned above.
The denominator 1 — u? factors as (1 — u)(1 + u), and imposing the condition

1 A n B
(1—w)(14+u) 1—u 1+4u
on A, B € R gives, after easy computations, A = B = 1/2. It follows, again by substitution,
that

We are thus left with finding

1 1 1 1 1 1 1
du = = d — [ —— du==log|1 — —log |1 — C.
/1—u2 “ 2/1—|—u uts | 7oy du=gloelltul=glog|l —ul+

Recalling that u = sin z, we conclude that
1 1
/secxdm:§log|sinx+1|—§log]sinx—1|+(].

[Takeaway| Sometimes we combine partial fractions with other techniques.
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