# ON THE SUBSTITUTION RULE

### Week 3 small class

The following is a reminder from the last lecture, which dealt with the substitution rule for integrals. If F, f are functions such that

$$\int f(x) \, \mathrm{d}x = F(x) + C \;,$$

then, for every third function  $\varphi$ .

$$\int f(\varphi(x))\varphi'(x) dx = F(\varphi(x)) + C$$

In concrete computations, the rule amounts to symbolically replacing  $\varphi(x)$  by a new variable u and  $\varphi'(x)$  dx by du, so as to obtain

$$\int f(\varphi(x))\varphi'(x) dx = \int f(u) du, \text{ with } u = \varphi(x).$$

In the upcoming three problems, we shall apply the substitution rule in combination with a new technique, called *partial fraction decomposition*.

## Problem A

(1) Which would you rather integrate?

A) 
$$\int \left(\frac{1}{x-1} - \frac{1}{2x+1}\right) dx$$
 B)  $\int \left(\frac{x+2}{2x^2 - x - 1}\right) dx$ 

Solution. The first integral looks easier, but more importantly it is susceptible to a technique we learned about in the large class. First, we separate the two summands in the integral using the property of integrals discussed in the first small class:

$$\int \left(\frac{1}{x-1} - \frac{1}{2x+1}\right) dx = \int \frac{1}{x-1} dx - \int \frac{1}{2x+1} dx.$$
 (1)

To each summand, we now apply the substitution rule. For the first one, we set u = x-1, so that du = (x-1)' dx = dx, and thus

$$\int \frac{1}{x-1} \, \mathrm{d}x = \int \frac{1}{u} \, \mathrm{d}u = \log|u| + C = \log|x-1| + C \,. \tag{2}$$

Similarly, for the second one we set u = 2x + 1, from which du = (2x + 1)' dx = 2 dx, that is,  $dx = \frac{1}{2} du$ . Hence

$$\int \frac{1}{2x+1} \, \mathrm{d}x = \frac{1}{2} \int \frac{1}{u} \, \mathrm{d}u = \frac{1}{2} \log|u| + C = \frac{1}{2} \log|2x+1| + C. \tag{3}$$

Combining (1), (2) and (3), we obtain

$$\int \left(\frac{1}{x-1} - \frac{1}{2x+1}\right) dx = \log|x-1| - \frac{1}{2}\log|2x+1| + C.$$

(2) What happens if we find a common denominator and add the fractions in integral A)? Solution. We find that the integrals in A) and B) are the same. Indeed,

$$\frac{1}{x-1} - \frac{1}{2x+1} = \frac{2x+1-(x-1)}{(x-1)(2x+1)} = \frac{x+2}{2x^2-x-1} .$$

[Takeaway] The integral in B) would be approachable but we need a way to "undo" finding a common denominator. This method is called the method of partial fractions.

# Problem B

(1) Consider  $\int \frac{7x+13}{(2x+5)(x-2)} dx$ . Start by supposing our function can be written in the following way:

$$\frac{7x+13}{(2x+5)(x-2)} = \frac{A}{2x+5} + \frac{B}{x-2} .$$

Find A and B.

Solution. We have

$$\frac{A}{2x+5} + \frac{B}{x-2} = \frac{A(x-2) + B(2x+5)}{(2x+5)(x-2)} = \frac{(A+2B)x + 5B - 2A}{(2x+5)(x-2)}.$$

As we want the latter to be equal to

$$\frac{7x+13}{(2x+5)(x-2)}$$

for every  $x \in \mathbb{R}$ , we must equate the coefficients corresponding to monomials of the same degree, whence we need to solve the linear system

$$\begin{cases} A + 2B = 7 \\ 5B - 2A = 13 \end{cases}$$

The first equation gives A = 7 - 2B, which we can plug into the second equation, thereby getting

$$5B - 2(7 - 2B) = 13$$
, that is,  $9B = 27$ ,

which gives B = 3, whence  $A = 7 - 2 \cdot 3 = 1$ .

Alternatively, we may observe that the equality

$$A(x-2) + B(2x+5) = 7x + 13$$

must be valid for every  $x \in \mathbb{R}$ ; therefore, we may judiciously choose values of x which simplify our search for A and B. For instance, taking x = 2 makes the summand containing the factor A vanish, and yields

$$A \cdot 0 + B(4+5) = 7 \cdot 2 + 13 = 27$$
,

which immediately gives B=3. Likewise, taking  $x=-\frac{5}{2}$  makes the term containing the factor B vanish:

$$A\left(-\frac{5}{2}-2\right)+B\cdot 0=-7\cdot \frac{5}{2}+13\;, \text{ that is, } -\frac{9}{2}A=-\frac{9}{2}\;,$$

and A = 1 follows.

[Takeaway] When doing partial fractions, selecting convenient values of x can simplify your algebra.

(2) Compute the integral.

Solution. From the previous point, and the well-known property of the integral of a sum of two functions, we have

$$\int \frac{7x+13}{(2x+5)(x-2)} dx = \int \frac{1}{2x+5} dx + 3 \int \frac{1}{x-2} dx.$$

Substituting u = 2x + 5, du = 2 dx in the first integral, we get

$$\int \frac{1}{2x+5} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \log|u| + C = \frac{1}{2} \log|2x+5| + C;$$

similarly, for the second integral, we substitute u = x - 2, du = dx and obtain

$$\int \frac{1}{x-2} dx = \int \frac{1}{u} du = \log|u| + C = \log|x-2| + C.$$

Putting everything together, we conclude that

$$\int \frac{7x+13}{(2x+5)(x-2)} dx = \frac{1}{2} \log|2x+5| + 3\log|x-2| + C.$$

[Takeaway] Write the big fraction as two simpler fractions and solve for the numerator.

### Problem C

Compute  $\int \sec x \, dx$ , by first transforming it into  $\int \frac{\cos x}{\cos^2 x}$  and then transforming the latter into  $\int \frac{1}{1-u^2} \, du$ .

Solution. Recall the definition of the secant function:  $\sec x = \frac{1}{\cos x}$  for every  $x \in \mathbb{R}$  for which  $\cos x \neq 0$ . Multiplying numerator and denominator by the non-zero quantity  $\cos x$ , we get  $\sec x = \frac{\cos x}{\cos^2 x}$ , whence in particular

$$\int \sec x \, \mathrm{d}x = \int \frac{\cos x}{\cos^2 x} \, \mathrm{d}x \; .$$

We now make use of the trigonometric identity

$$\cos^2 x + \sin^2 x = 1 \; ,$$

valid for every  $x \in \mathbb{R}$ , in order to derive

$$\cos^2 x = 1 - \sin^2 x \ .$$

We are thus left with finding

$$\int \frac{\cos x}{1 - \sin^2 x} \, \mathrm{d}x \, .$$

Substituting  $u = \sin x$ , which yields  $du = (\sin x)' dx = \cos x dx$ , we see that the latter indefinite integral is precisely equal to

$$\int \frac{1}{1-u^2} \, \mathrm{d}u \;,$$

which in turn can be approached via the partial-fraction decomposition technique learned above. The denominator  $1 - u^2$  factors as (1 - u)(1 + u), and imposing the condition

$$\frac{1}{(1-u)(1+u)} = \frac{A}{1-u} + \frac{B}{1+u}$$

on  $A, B \in \mathbb{R}$  gives, after easy computations, A = B = 1/2. It follows, again by substitution, that

$$\int \frac{1}{1-u^2} du = \frac{1}{2} \int \frac{1}{1+u} du + \frac{1}{2} \int \frac{1}{1-u} du = \frac{1}{2} \log|1+u| - \frac{1}{2} \log|1-u| + C.$$

Recalling that  $u = \sin x$ , we conclude that

$$\int \sec x \, dx = \frac{1}{2} \log|\sin x + 1| - \frac{1}{2} \log|\sin x - 1| + C.$$

[Takeaway] Sometimes we combine partial fractions with other techniques.