
ON THE SUBSTITUTION RULE

Week 3 small class

The following is a reminder from the last lecture, which dealt with the substitution rule for
integrals. If F, f are functions such that∫

f(x) dx = F (x) + C ,

then, for every third function φ,∫
f(φ(x))φ′(x) dx = F (φ(x)) + C

In concrete computations, the rule amounts to symbolically replacing φ(x) by a new variable
u and φ′(x) dx by du, so as to obtain∫

f(φ(x))φ′(x) dx =

∫
f(u) du , with u = φ(x) .

In the upcoming three problems, we shall apply the substitution rule in combination with a
new technique, called partial fraction decomposition.

Problem A

(1) Which would you rather integrate?

A)

∫ (
1

x− 1
− 1

2x+ 1

)
dx B)

∫ (
x+ 2

2x2 − x− 1

)
dx

Solution. The first integral looks easier, but more importantly it is susceptible to a
technique we learned about in the large class. First, we separate the two summands in
the integral using the property of integrals discussed in the first small class:∫ (

1

x− 1
− 1

2x+ 1

)
dx =

∫
1

x− 1
dx−

∫
1

2x+ 1
dx . (1)

To each summand, we now apply the substitution rule. For the first one, we set u = x−1,
so that du = (x− 1)′ dx = dx, and thus∫

1

x− 1
dx =

∫
1

u
du = log |u|+ C = log |x− 1|+ C . (2)

Similarly, for the second one we set u = 2x + 1, from which du = (2x + 1)′ dx = 2 dx,
that is, dx = 1

2
du. Hence∫

1

2x+ 1
dx =

1

2

∫
1

u
du =

1

2
log |u|+ C =

1

2
log |2x+ 1|+ C . (3)

Combining (1), (2) and (3), we obtain∫ (
1

x− 1
− 1

2x+ 1

)
dx = log |x− 1| − 1

2
log |2x+ 1|+ C .

(2) What happens if we find a common denominator and add the fractions in integral A)?
Solution. We find that the integrals in A) and B) are the same. Indeed,

1

x− 1
− 1

2x+ 1
=

2x+ 1− (x− 1)

(x− 1)(2x+ 1)
=

x+ 2

2x2 − x− 1
.

1
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[Takeaway] The integral in B) would be approachable but we need a way to “undo” finding
a common denominator. This method is called the method of partial fractions.

Problem B

(1) Consider
∫

7x+13
(2x+5)(x−2)

dx. Start by supposing our function can be written in the follow-

ing way:
7x+ 13

(2x+ 5)(x− 2)
=

A

2x+ 5
+

B

x− 2
.

Find A and B.

Solution. We have

A

2x+ 5
+

B

x− 2
=

A(x− 2) +B(2x+ 5)

(2x+ 5)(x− 2)
=

(A+ 2B)x+ 5B − 2A

(2x+ 5)(x− 2)
.

As we want the latter to be equal to

7x+ 13

(2x+ 5)(x− 2)

for every x ∈ R, we must equate the coefficients corresponding to monomials of the
same degree, whence we need to solve the linear system{

A+ 2B = 7

5B − 2A = 13
.

The first equation gives A = 7 − 2B, which we can plug into the second equation,
thereby getting

5B − 2(7− 2B) = 13 , that is, 9B = 27 ,

which gives B = 3, whence A = 7− 2 · 3 = 1.
Alternatively, we may observe that the equality

A(x− 2) +B(2x+ 5) = 7x+ 13

must be valid for every x ∈ R; therefore, we may judiciously choose values of x which
simplify our search for A and B. For instance, taking x = 2 makes the summand
containing the factor A vanish, and yields

A · 0 +B(4 + 5) = 7 · 2 + 13 = 27 ,

which immediately gives B = 3. Likewise, taking x = −5
2
makes the term containing

the factor B vanish:

A

(
−5

2
− 2

)
+B · 0 = −7 · 5

2
+ 13 , that is, −9

2
A = −9

2
,

and A = 1 follows.
[Takeaway] When doing partial fractions, selecting convenient values of x can sim-

plify your algebra.
(2) Compute the integral.

Solution. From the previous point, and the well-known property of the integral of a
sum of two functions, we have∫

7x+ 13

(2x+ 5)(x− 2)
dx =

∫
1

2x+ 5
dx+ 3

∫
1

x− 2
dx .

Substituting u = 2x+ 5, du = 2 dx in the first integral, we get∫
1

2x+ 5
dx =

1

2

∫
1

u
du =

1

2
log |u|+ C =

1

2
log |2x+ 5|+ C ;
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similarly, for the second integral, we substitute u = x− 2, du = dx and obtain∫
1

x− 2
dx =

∫
1

u
du = log |u|+ C = log |x− 2|+ C .

Putting everything together, we conclude that∫
7x+ 13

(2x+ 5)(x− 2)
dx =

1

2
log |2x+ 5|+ 3 log |x− 2|+ C .

[Takeaway] Write the big fraction as two simpler fractions and solve for the numer-
ator.

Problem C

Compute
∫
secx dx, by first transforming it into

∫
cosx
cos2 x

and then transforming the latter

into
∫

1
1−u2 du.

Solution. Recall the definition of the secant function: sec x = 1
cosx

for every x ∈ R for which
cosx ̸= 0. Multiplying numerator and denominator by the non-zero quantity cosx, we get
secx = cosx

cos2 x
, whence in particular∫

secx dx =

∫
cosx

cos2 x
dx .

We now make use of the trigonometric identity

cos2 x+ sin2 x = 1 ,

valid for every x ∈ R, in order to derive

cos2 x = 1− sin2 x .

We are thus left with finding ∫
cosx

1− sin2 x
dx .

Substituting u = sinx, which yields du = (sinx)′ dx = cosx dx, we see that the latter indefinite
integral is precisely equal to ∫

1

1− u2
du ,

which in turn can be approached via the partial-fraction decomposition technique learned above.
The denominator 1− u2 factors as (1− u)(1 + u), and imposing the condition

1

(1− u)(1 + u)
=

A

1− u
+

B

1 + u

on A,B ∈ R gives, after easy computations, A = B = 1/2. It follows, again by substitution,
that ∫

1

1− u2
du =

1

2

∫
1

1 + u
du+

1

2

∫
1

1− u
du =

1

2
log |1 + u| − 1

2
log |1− u|+ C .

Recalling that u = sinx, we conclude that∫
secx dx =

1

2
log | sinx+ 1| − 1

2
log | sinx− 1|+ C .

[Takeaway] Sometimes we combine partial fractions with other techniques.
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