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Abstract

A momentous legacy of twentieth-century mathematics is the realisation that evolv-
ing systems governed by deterministic factors frequently obey, when observed for
su�ciently extended periods of time, rules which are commonly regarded as paradig-
matic of randomly developing aggregates. The purpose of the present dissertation
is to investigate aspects of the long-term behaviour of some speci�c instances of
dynamical systems, in a purely deterministic context as well as in the complemen-
tary setting of stochastic processes. The examples of a deterministic sort are drawn
from the research domain known as homogeneous dynamics, which has experienced
a �urry of activity in the last few decades, whereas the objects over which the ran-
dom processes of interest are de�ned represent the focus of the equally vibrant area
of geometric group theory.
After an historically-oriented introductory Chapter 1, we present in Chapter 2 the re-
sults obtained in joint work with Davide Ravotti concerning the quantitative asymp-
totic features of expanding circles on compact hyperbolic surfaces and their unit
tangent bundles. Critical to our approach is the interpretation of those bundles
as homogeneous spaces of Lie groups, consequently endowed with a rich algebraic
structure; under such an identi�cation, expanding geodesic circles are described
by translated orbits of a maximal compact subgroup. A quantitative analysis of
the asymptotic behaviour of translates of subgroup orbits in homogeneous spaces
is highly desirable in light of a number of applications, among which the classical
lattice point counting problem, in Gauss' archetypical formulation as well as in its
various other incarnations, certainly deserves special mention. Margulis' pioneering
contributions contained in his doctoral thesis animated a great deal of research in
this direction; thanks to his groundbreaking insights, it gradually emerged, during
the seventies of the last century, that coeval developments in ergodic theory could be
fruitfully combined with the peculiar geometry of the underlying spaces to provide
an essentially complete understanding from a qualitative standpoint. Quantita-
tive re�nements of these arguments necessitate, however, �ner techniques typically
originating in abstract harmonic analysis, spectral theory and analytic number the-
ory. Here we sharpen previous e�ective equidistribution results due to Benoist-Oh
and Bufetov-Forni, establishing a precise asymptotic expansion for averages of suf-
�ciently regular observables along expanding circle arcs. Our approach is heavily
inspired by Ratner's work on quantitative mixing of geodesic and horocycle �ows on
�nite-volume hyperbolic surfaces. Con�ning ourselves to compact surfaces is both
indispensable for the arguments to apply and intrinsically relevant to the problem:
as observed by Zagier, attaining the optimal equidistribution rate in the closely con-
nected case of long periodic horocycles on the �nite-volume non-compact modular
surface poses challenges of the same order of complexity as proving the celebrated
Riemann hypothesis.
For a wide class of observables, the asymptotics we obtain is �ne enough to enable us
to pinpoint the long-term statistical behaviour of averages along expanding circles,
when the initial point is randomly sampled on the manifold according to a �xed,
but arbitrary, probability distribution. The distributional limit theorems thus es-



ii

tablished, just as the nature of the asymptotic expansion from which they originate,
are in the same vein of analogous results previously achieved by Flaminio-Forni and
Bufetov-Forni concerning ergodic averages along orbits of the horocycle �ow in the
same setting of compact hyperbolic surfaces. Relying on Ravotti's simpli�ed argu-
ment for the asymptotics in the latter case, which in turn builds upon the very same
overarching strategy adopted in Chapter 2, we provide in Chapter 3 a streamlined
proof of a statistical limit theorem for horocycle ergodic integrals, which captures
their �ne-scale oscillatory behaviour and is originally due to Dolgopyat and Sarig.
Contrary to the case of circle averages, here the source of randomness is given by
time, while the initial position in the phase space is �xed and arbitrary. The inspira-
tion driving this line of investigation in single-orbit dynamics traces its origins in the
Erdös-Kac theorem on the Gaussian law of errors for additive arithmetical functions,
which further served as a prototype for a multitude of subsequent developments in
probabilistic number theory.
The manuscript culminates in Chapter 4 with the description of our results pertain-
ing to a class of randomly evolving systems, speci�cally random walks on discrete
groups. The topic has attracted considerable interest ever since it was �rst brought
to the fore by the work of Furstenberg and Kesten in the early sixties of the last
century, motivated by the quest to establish noncommutative analogues of classical
limit theorems in probability theory such as the law of large numbers and the cen-
tral limit theorem. Here we adopt the perspective of the theory of large deviations,
whose early advancements owe a tremendous debt to the pioneering contributions of
Cramér and Varadhan, and which concerns itself with the quantitative decay rate of
probabilities of rare events. Paralleling recent results of Sert in the complementary,
but also partially intertwined setting of random walks on linear algebraic groups, we
prove existence of the large deviation principle and identify a number of properties
of the underlying rate function for random walks on a large class of �nitely gener-
ated groups, encompassing the nowadays intensely investigated Gromov-hyperbolic
groups, where the stochastic processes under considerations are subject to minor
non-degeneracy assumptions.
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Compendio

Un lascito signi�cativo della matematica del Novecento è la scoperta che sistemi
in evoluzione governati da fattori deterministici obbediscono frequentemente, se os-
servati per periodi temporali su�cientemente estesi, a regole che sono tipicamente
viste come paradigmatiche di aggregati che si evolvono in maniera aleatoria. Lo
scopo della presente dissertazione è di investigare alcuni aspetti del comportamento
a lungo termine di alcuni esempi di sistemi dinamici, sia in contesto puramente de-
terministico che in quello complementare dei processi stocastici. I modelli di natura
deterministica sono tratti dal dominio di ricerca noto come dinamica omogenea, che
ha vissuto negli ultimi decenni un turbinìo di sviluppi, mentre gli oggetti su cui sono
de�niti i processi aleatori presi in considerazione rappresentano il fulcro della teoria
geometrica dei gruppi, un'area di ricerca parimenti vibrante di attività.
Dopo l'introduttivo Capitolo 1 di taglio storico, vengono presentati nel Capitolo 2
i risultati ottenuti congiuntamente a Davide Ravotti, riguardanti le proprietà asin-
totiche quantitative di cerchi che si espandono su super�ci iperboliche compatte e i
loro �brati unitangenti. Cruciale per il nostro approccio è l'interpretazione di tali
�brati come spazi omogenei di gruppi di Lie, dotati come tali di una ricca struttura
algebrica; tramite questa identi�cazione, cerchi geodetici di raggio crescente sono
descritti da traslati di orbite di un sottogruppo compatto massimale. Un'analisi
quantitativa del comportamento asintotico di traslati di orbite di sottogruppi in
spazi omogenei è desiderabile alla luce di numerose applicazioni, tra le quali merita
speciale menzione il problema del conteggio di punti reticolari, sia esso considerato
nella formulazione originaria di Gauss o nelle sue altre molteplici incarnazioni. I
contributi pioneristici di Margulis, contenuti nella sua tesi di dottorato, animarono
un consistente lavoro di ricerca in tale direzione; grazie alle sue innovative intu-
izioni emerse gradualmente, durante gli anni settanta del secolo scorso, che sviluppi
coevi della teoria ergodica potessero essere combinati fruttuosamente con la pecu-
liare geometria degli spazi soggiacenti per fornire una comprensione del fenomeno
sostanzialmente completa da un punto di vista qualitativo. Tuttavia, miglioramenti
quantitativi di tali argomenti necessitano di tecniche più ra�nate che traggono tipi-
camente origine dall'analisi armonica astratta, dalla teoria spettrale e dalla teoria
analitica dei numeri. Nel presente lavoro si a�nano precedenti risultati di equidis-
tribuzione e�ettiva dovuti a Benoist-Oh e Bufetov-Forni, tramite l'ottenimento di
una espansione asintotica precisa per medie integrali di osservabili su�cientemente
regolari lungo archi di cerchio che si espandono. L'approccio perseguito è larga-
mente ispirato ai lavoro di Ratner sul mescolamento quantitativo di �ussi geodetici
e orociclici su super�ci iperboliche di volume �nito. Restringersi al caso delle su-
per�ci compatte è allo stesso tempo indispensabilie per la validità delle speci�che
argomentazioni proposte e intrinsecamente rilevante per il problema in esame; come
osservò Zagier, il conseguimento del tasso di equidistribuzione ottimale nel caso in-
timamente connesso di lunghi orocicli periodici sulla super�cie modulare classica,
non compatta ma di volume �nito, pone dinnanzi a s�de del medesimo ordine di
complessità di una eventuale dimostrazione della celebre ipotesi di Riemann.
Per una vasta classe di osservabili, l'asintotica ottenuta è su�cientemente accurata
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per determinare con precisione il comportamento statistico a lungo termine delle
medie integrali lungo cerchi di raggio crescente, dove il punto iniziale è campionato
aleatoriamente sulla varietà secondo una pre�ssata, ma altrimenti arbitraria, dis-
tribuzione di probabilità. I teoremi limite distribuzionali in tal modo ottenuti, così
come la natura dell'espansione asintotica da cui scaturiscono, riecheggiano risultati
analoghi raggiunti in precedenza da Flaminio-Forni e Bufetov-Forni concernenti me-
die ergodiche lungo orbite del �usso orociclico, di nuovo nel contesto delle super�ci
iperboliche compatte. Partendo dalla versione della relativa asintotica ottenuta da
Ravotti, che a sua volta si fonda sulla medesima strategia complessiva messa in atto
nel Capitolo 2, o�riamo nel Capitolo 3 una prova sempli�cata di un teorema limite
statistico per integrali ergodici lungo orocicli, il quale descrive in modo accurato il
comportamento oscillatorio di questi ultimi ed è originariamente dovuto a Dolgo-
pyat e Sarig. Contrariamente al caso delle medie integrali lungo archi di cerchio, in
questo caso la fonte dell'aleatorietà risiede nella scelta dell'istante temporale, lad-
dove la posizione iniziale nello spazio delle fasi è arbitraria ma �ssata. L'ispirazione
fondante di tale direzione di ricerca nel campo della dinamica a orbita singola ri-
monta al noto teorema di Erdös-Kac sulla distribuzione gaussiana degli errori per
funzioni aritmetiche additive, il quale funse altresì da prototipo per una ricca messe
di successivi sviluppi nell teoria probabilistica dei numeri.
L'opera si conclude con il Capitolo 4, contenente la descrizione dei nostri risultati
in merito a una classe di sistemi a evoluzione aleatoria, nello speci�co passeggiate
aleatorie su gruppi discreti. Il tema ha attratto considerevole interesse sin da quando
si impose per la prima volta all'attenzione della comunità in virtù dei lavori di
Furstenberg e Kesten nei primi anni sessanta del secolo scorso; tali ricerche mossero
dal problema di ottenere versioni non commutative di teoremi limite classici della
teoria della probabilità, fra i quali �gurano preminentemente la legge dei grandi
numeri e il teorema limite centrale. Adottiamo qui la prospettiva della teoria delle
grandi deviazioni, i cui albori furono marcatamente segnati dai contributi pioneris-
tici di Cramér e Varadhan, e che è imperniata sulla questione del tasso quantitativo
di decadimento della probabilità di eventi rari. Procedendo in parallelo a risultati re-
centi di Sert nel quadro complementare, ma anche parzialmente interconnesso, delle
passeggiate aleatorie su gruppi algebrici lineari, dimostriamo l'esistenza del principio
delle grandi deviazioni, e identi�chiamo una serie di proprietà della funzione tasso
che lo governa, per passeggiate aleatorie soggette a lievi ipotesi volte a escludere casi
degeneri, e aventi luogo in un'ampia collezione di gruppi �nitamente generati, che
comprende fra gli altri i cosiddetti gruppi Gromov-iperbolici, attualmente oggetto
di cospicue investigazioni.
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Chapter 1

Introduction

The present thesis consists of two largely independent parts: the �rst comprises
Chapters 2 and 3 and is concerned with asymptotic features of dynamical systems
given by �ows of geometrical-algebraic nature on homogeneous spaces, whereas the
second addresses aspects of the long-term behaviour of random walks driven by
actions of discrete groups on metric spaces, and is developed in Chapter 4. This
opening chapter hosts a compendium of the thesis' results, while simultaneously
providing a reasonably extensive discussion of their historical motivations as well as
a brief account of the overarching research directions within which they are contex-
tualized. The main theorems proven in the thesis are all phrased in this �rst chapter,
at times and when appropriate in a condensed version, while complete statements
and proofs are relegated to the corresponding sections of Chapters 2, 3 and 4.

1.1 Equidistribution in dynamics on homogeneous
spaces

1.1.1 The early days of dynamics

The mathematical theory of dynamical systems concerns itself, in its classical declen-
sion, with the investigation of the long-term behaviour of chaotic systems in motion,
whose law of evolution for short intervals of time is knowna priori . Whilst histori-
cally originating in the (mostly ongoing) e�ort to describe the large-scale structure
and evolution of physical systems on a qualitative level, notably in celestial me-
chanics and statistical thermodynamics, it underwent sustained developments and
unveiled, over the course of the twentieth century, substantive and unexpected con-
nections with a multitude of mathematical areas, such as number theory, probability
theory, combinatorics, Riemannian and algebraic geometry, the theory of Lie and
algebraic groups and their discrete subgroups.
It stands to reason to credit Newton with the fatherhood of theoretical dynamics
as a mathematical discipline: in his epoch-makingPhilosophiae naturalis principia
mathematica(�rst published in 1687, an english translation is available in [152]), he
set forth his celebrated laws governing the physical motion of objects while simulta-

1
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neously laying down the foundations of modern di�erential calculus, where the latter
provides the correct formal language underpinning the mathematical description of
the physical world. Speci�cally, the dynamical evolution of a physical system is
encapsulated, on an in�nitesimal time scale, in a collection of di�erential equations
whose explicit integration, or solution, with the prescribed initial conditions o�ers
in principle a complete understanding of the long-term behaviour of the system; the
philosophical implications of a similar deduction are codi�ed in what became sub-
sequently known as Newton'sdeterminism. However, the epistemological optimism
which might be derived by this conclusion soon collided with the dashed hopes of an
explicit analytical solution of the equations describing even the most basic system of
three bodies solely undergoing mutual gravitational attraction; in celestial mechan-
ics, the catalytic agent for a great deal of Newton's investigations, this long-standing
question takes on the celebrated name ofN -body problem.
It is owing to Poincaré's transformative insights that the subject regained momen-
tum towards the end of the nineteenth century, acquiring at the same time an
independent status of mathematical discipline detached from the theory of di�er-
ential equations. Les Méthodes nouvelles de la mécanique céleste(cf. [158]), which
appeared �rst in 1892, brought about a decisive transition in perspective, in that
the focus is shifted away from the analytic expression of the di�erential equations
governing the system to the geometric properties and the ensuing group of transfor-
mations of thephase space, namely of the collection of all possible states attainable
by the system. This allowed to establish a number of general features ofconser-
vative systems, that is, of systems under whose evolution certain quantity is pre-
served, thereby supplying an answer to previously unsolved questions concerning,
for instance, the existence of periodic or recurrent1 trajectories.
Poincaré's vision was subsequently brought to a mathematically more mature form
in the foundational work of G.D. Birkho�, dating from the third decade of the twen-
tieth century, which provided an abstract framework within which all the previous
conducted investigations could �t. The gradual abstraction process underlying all
these developments shed new light, concurrently, on emerging connections with other
�elds of mathematical research, already present in the work of Hopf and Hedlund
(cf. [85, 88, 89]) from the thirties (to which we shall return in forthcoming sections)
and later greatly pioneered by the spectacular achievements of Furstenberg and Mar-
gulis in the sixties, seventies and eighties (for which we refer, for instance, to [68]
and [94]). Such connections have represented pivotal driving forces behind all suc-
cessive advancements in the general theory ever since, and signifcantly contributed
to spur the birth and the progress of all its various rami�cations.
For further details on the history of the theory of dynamical systems in its early
stages, the reader is referred to the introductions of Furstenberg's monograph [68]
and of the book [98] of A. Katok and Hasselblatt, sources from which this section
draws considerable inspiration.

1At the time, the property sought after was called Poisson stability of orbits: it refers to the
characteristic that a given orbit of the system visits in the future positions which come arbitrarily
close to those already occupied in the past. It is nowadays referred to asrecurrence.
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1.1.2 Homogeneous dynamics: historical developments and
connections to other branches

If deprived of any concrete incarnation whatsoever, a dynamical system consists
essentially of the following three ingredients:

(a) a set X , comprising all possible states in which the system might �nd itself;

(b) a notion of time, which is typically embodied by one of the four setsZ � 0, Z,
R� 0, R (giving rise, respectively, to the notions of discrete-time irreversible
system, discrete-time invertible system, semi�ow and �ow), but which can be
pro�tably generalized to include much more general groups and semigroups,
as we shall see in several instances under consideration in this manuscript;

(c) a rule determining how the system evolves in terms of the knowledge of its
past and present state; to encompass both the classical case of discrete or
continuous dynamics and the generalizations to other groups alluded to in the
previous point, such law is mathematically given in term of a (semi-)group
action of time on the setX .

In practice, the data making up a dynamical system possess a higher degree of
complexity. The setX usually enjoys some additional structure, such as a topology,
a � -algebra of measurable sets or a smooth structure, and the action de�ning the
evolution of the system routinely preserves such a structure. Depending on the type
considered, these constitute the object of di�erent branches of dynamics, such as
topological dynamics, smooth dynamics and ergodic theory.
In Chapters 2 and 3 of this thesis, we shall investigate asymptotic properties of
dynamical systems arising from group actions of algebro-geometric nature on certain
spaces carrying a large group of symmetries, calledhomogeneous spaces; the study of
group actions of this sort is the subject of the research area known as homogeneous
dynamics.
In abstract, purely topological terms, a homogeneous space may be de�ned as a
topological spaceX whose group of homeomorphisms acts transitively on it; this
formalizes the intuition of an object which looks the same from every point, the
meaning which should here be attached to the termhomogeneous. Familiar exam-
ples of this nature are Euclidean spaces, spheres and tori of arbitrary dimension. In
such level of generality however, little to no information can be elicited; the group of
homeomorphism of an arbitrary topological spaceX may even fail to admit a struc-
ture of topological group for which its natural action onX is continuous. Restricting
the attention to those spaces admitting a structure of a smooth manifold improves
the situation only partially, as the full group of di�eomorphisms is typically enor-
mous2; as a matter of fact, it always acts transitively on the given manifold if the
latter is connected. It is only con�ning the focus to those di�eomorphisms which
preserve an additional geometric structure on the manifold, such as a symplectic

2Unless the manifold is zero-dimensional,the group is endowed with a natural structure of
in�nite-dimensional Banach manifold.
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form, a volume form or a Riemannian metric, that the resulting group of transfor-
mations comes equipped with a su�ciently rich structure amenable to an in-depth
study. In this respect, it is worth recalling here a celebrated theorem of Meyers
and Steenrod (see [151]), asserting that the group of Riemannian isometries of a
connected Riemannian manifold(M; g) admits the structure of a �nite-dimensional
real Lie groupG acting smoothly onM . If G happens to act transitively onM (in
which caseM is said to beRiemannian homogeneous), the standard theory of quo-
tient manifolds gives then that M is G-equivariantly di�eomorphic to the quotient
of G by a closed subgroupH .
These considerations lead us to the quintessential classes of actions homogeneous
dynamics is concerned with: the space on which the action takes place is a quotient
X = H nG of a Lie group3 G by a closed subgroupH , and the acting group is a
subgroupL of G, acting (smoothly, it is a Lie subgroup) on the left on the quotient
X by right translations:

l � Hg = Hgl � 1 ; g 2 H; l 2 L:

Throughout this manuscript, we shall consider those cases in which� is a discrete
subgroup andF is a Lie subgroup, typically a one-parameter subgroup ofG. For a
discussion as to the mildness of the limitations this involves when compared to the
general case, the reader is referred to the survey [105].
A considerable surge of interest in these types of dynamical systems, from dis-
parate mathematical communities, occurred in the seventies and the eighties of the
twentieth century, though earlier research had already addressed some questions
concerning them; see, for instance, the seminal article of Gelfand and Fomin [71] in
which the spectral approach of unitary representations was decisively put forward,
or the monograph [4] by Auslander, Green and Hahn. It gradually emerged, notably
through grounbreaking insights of Raghunathan, Dani and Margulis, that the dy-
namical features of such algebraic actions, embodied in the distribution properties
of single orbits inside the ambient space, could provide a way to deal with a number
of previously intractable problems in number theory. To mention but a a couple of
the most striking examples of successful application of homogeneous dynamics to
number theory, we cite:

(1) Margulis' solution to the long-standing Oppenheim conjecture on values of in-
de�nite quadratic forms at integral points (cf. [137, 138]), which rests on the
peculiar rigidity of properties of the action of the subgroupSO2;1(R) on the
quotient SL3(Z)nSL3(R), the latter being identi�ed with the space of unimod-
ular lattices in R3;

(2) the major progress by Einsiedler, Katok and Lindenstrauss [51] towards Lit-
tlewood's conjecture on simultaneous approximation of irrational numbers
by rationals, which is intimately tied to the classi�cation of measures in-
variant under the action of the positive diagonal subgroupA < SL3(R) on
SL3(Z)nSL3(R).

3This will be the case throughout this text; more generally, however, analytic groups over
arbitrarily local �elds, as well as products thereof, are equally relevant in applications.
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Further landmark examples are discusses in various amount of detail in [54, 105,
121, 123, 124].
To mention more novel directions of application, we point out that recent advances in
homogeneous dynamics resulted in signi�cant progress towards long-standing conjec-
tures in the mathematical theory of quantum chaos (with outstanding contributions
due �rst to Lindenstrauss [122] and afterwards to Silberman and Venkatesh [192,
193]) and enabled an improved understanding of the kinetic theory of models for
particle transport in matter (see the work [142] of Marklof and Strömbergsson, and
the references therein).

1.1.3 E�ective homogeneous dynamics: mixing, equidistri-
bution and the relation to counting problems

The results of Chapters 2 and 3 chie�y pertain to the quantitative analysis of the
asymptotic distribution properties of various kinds of subsets of the ambient ho-
mogeneous space under the evolution prescribed by the given dynamics. To give a
precise mathematical sense to these words, it is bene�cial to distill for a moment an
abstract formulation in the language of measure-preserving dynamical systems from
the concrete setting we are concerned with, and which we shall shortly introduce.
Let G be a locally compact Hausdor� topological group, acting by measure-preserving
transformations of a probability measure space(X; A ; � ). Let A � X be a measur-
able set; it is of great interest, both from a theoretical point of view and in light of
applications, to explore the behaviour of the translatesg(A) of A by elements of the
group G in the limit as g tends to in�nity 4 inside G. Speci�cally, it is relevant to
determine how the setsg(A) distribute inside the ambient spaceX . This question
is best phrased in measure-theoretic and functional-analytic language: typically, the
subsetA under consideration comes equipped with a natural probability measure
� A , and we would like to describe the set of all limits, in a suitable topology, of the
image measuresg� � A as g tends to in�nity. If A is a measure-theoretically thick
subset, that is, if � (A) > 0, the natural choice of� A is the renormalized restriction
of � to A. As we shall presently recall, examining the question for this class of sets
leads already to the fundamental notion of mixing in ergodic theory; however, it
is around extending this quest to subsets which might be negligible from the point
of view of the measure� , but are otherwise geometrically relevant, that our work
primarily revolves.
In all cases we will be dealing with,X is a locally compact Hausdor� topological
space, endowed with the Borel� -algebraA , and on whichG acts continuously; it is
therefore natural and convenient to work with the weak� topology for convergence of
measures. As already hinted at, a broad class of systems for which positive-measure
subsetsequidistributeunder the dynamics, that is, for which the measuresg� � A (� A

4More formally, this limit is to be considered inside the one-point compacti�cation of G; the
question clearly makes sense only if the acting groupG is non-compact, which shall always be
the case for us. We also highlight here that is the very emphasis on asymptotic properties that
distinguishes the theory of dynamical systems in its essence from other mathematical theories
addressing the study of symmetry and group actions.
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being de�ned, as above, as a normalized restriction) converge to� as g walks o�
to in�nity, are strongly mixing systems. Recall that a measure-preserving action
of a group G on a spaceX as above is called strongly mixing if, for any pair of
measurable subsetsA; B of X ,

lim
g!1 ; g2 G

� (g� 1(A) \ B ) = � (A)� (B ) :

Now �x A of positive � -measure, and letB be any measurable subset; then

g� � A (B ) = � A (g� 1(B )) =
� (g� 1(B ) \ A)

� (A)
g!1
�!

� (A)� (B )
� (A)

= � (B ) :

By the standard Portmanteau Lemma, this implies (and is actually strictly stronger
than) equidistribution of the measuresg� � A as de�ned above. In a heuristic sense, it
means that the evolutionsg(A) of the setA tend to �ll up the space X uniformly with
respect to the measure� . To summarize the discussion, we might say that strong
mixing corresponds5 to equidistribution of thick subsets. As to thinner (that is, � -
null) subsets, it is clear that no equidistribution statement can hold in full generality
under the assumption of strong mixing; rather trivially, translates of singletons
never equidistribute, unless the measure space(X; A ; � ) is trivial (namely � is a
Dirac mass). What about sets of intermediate size, for instance, �nite-volume lower-
dimensional submanifolds of a smooth manifoldX , equipped with their renormalized
volume measures?
In the context of homogeneous dynamics, an instance of this problem was �rst con-
sidered, to the best of our knowledge, in Margulis' thesis [140]. The dynamical
setup is precisely the same in which we place ourselves in Chapter 2: the spaceX
is a compact (or, more generally in [140], �nite-volume) quotient of the Lie group
G = SL2(R) by a discrete subgroup� < G , endowed with the natural (unique)
G-invariant probability measure � = vol . The geometric signi�cance of such spaces
lies in the fact that they can be identi�ed with unit tangent bundles of compact con-
nected hyperbolic surfaces (or, somewhat equivalently, of compact Riemann surfaces
of genus strictly larger than1), and are therefore the natural environment for much
studied �ows of geometric origin such as the geodesic and the horocycle �ow (the
reader is referred to Chapters 2 and 3 for all the unde�ned mathematical terms we
employ in the present section). Most importantly for our purposes, such �ows ad-
mit a description as actions of one-parameter subgroups on the given homogeneous
space, and as such fall entirely within the purview of homogeneous dynamics.
As a consequence of the results of Howe and Moore [90] on decay at in�nity of matrix
coe�cients for unitary representations of semisimple Lie groups, the action ofG
on (X; A ; vol) is mixing6. It was Margulis' ingenious realization that a thickening

5Here it is worth pointing out that, when G = Z (or, more generally, whenG is amenable),
the weaker phenomenon of equidistribution on average, that is, of convergence towards� of the
averages 1

N

P N � 1
n =0 n� � A , corresponds in a similar manner toergodicity of the measure-preserving

G-action.
6Mixing of the geodesic and the horocycle �ow, which is an immediate consequence of mixing

of the global G-action, was actually known earlier, thanks to the work of Hopf and Hedlund
(cf. Hedlund's survey [86]).
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argument, exploiting the distinctive geometric properties of Riemannian symmetric
spaces, allows to transfer equidistribution of translates from positive-measure subsets
to orbits of certain lower dimensional subgroups.
We discuss the case of the maximal compact subgroupK = SO2(R) < G , in ac-
cordance with the subject of Chapter 2. The role of the setA is now played by a
(necessarily compact)K -orbit K � x0 = f � g0k : k 2 K g of a point x0 = � g0 2 X .
Geometrically, the latter set corresponds to the collection of all unit tangent vectors
to the hyperbolic surface� nG=K at the point � g0K , and can obviously be regarded
as a smooth closed curve inX , if desired. It carries a uniqueK -invariant Borel
probability measure mK �x0 ; when translated by elements ofG tending to in�nity,
mK �x0 distributes uniformly inside the spaceX .

Theorem 1.1.1 (Margulis). Let � be a lattice in G = SL2(R), X; K; vol; x0; mK �x0

as before. Then, for any continuous compactly supported functionf : X ! C,
Z

X
f dg� mK �x0

g!1
�!

Z

X
f d vol :

In other words, the translated measureg� mK �x0 equidistributes towards the uniform
measurevol on X .

Margulis' interest in the distribution properties of translates ofK -orbits arose in
light of the striking connection he himself discovered in [140] between such a dy-
namical phenomenon and the classical hyperbolic circle problem, which asks for
the asymptotics of the number of lattice points, namely points in an orbit of� for
its standard isometric action on the hyperbolic planeG=K, lying inside a hyper-
bolic ball of radius tending to in�nity. Leveraging Theorem 1.1.1 in conjunction
with a standard Fubini-type theorem for invariant measures on homogeneous spaces
(cf. Proposition 2.7.2), he provided a streamlined proof of the following asymptotic
counting result, originally established to Selberg via a �ne study of certain integral
operators (cf. [182]).

Theorem 1.1.2. Let G; K be as in Theorem 1.1.1 and �x a pointp0 2 G=K. Let
� < G be a lattice; for any real numberR > 0, denote byN (R) the number of
elements in the orbit� � p0 whose hyperbolic distance fromp0 does not exceedR.
Then, there exists an explicit constantc > 0, depending only on� , such that

N (R)
�e R

R!1�! c: (1.1.1)

The constantc is the ratio between the volumes of two homogeneous spaces de�ned
by � , see Theorem 2.1.24. The term�e R appearing in the denominator in (1.1.1) is
precisely the growth rate of the hyperbolic area of the ball of radiusR; observing
this, the asymptotics in Theorem 1.1.2 comes as no surprise, for the same type
of result holds for the classical Gauss circle problem in the Euclidean plane. An
extensive discussion of the history of the hyperbolic circle problem is provided in
Section 2.1.5.
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Margulis' contributions sparked intensive research aimed at understanding equidis-
tribution properties of translates of subgroup orbits in more general homogeneous
spaces, with a view towards the corresponding lattice point counting problems. His
original approach of deducing equidistribution of translates from mixing and deriv-
ing from it an asymptotic counting of lattice points revealed its remarkable �exibility
and was vastly generalized in the work of Eskin and McMullen [59], where Theo-
rems 1.1.1 and 1.1.2 are established for arbitrarya�ne symmetric spaces G=K and
irreducible lattices � < G . An alternative method for counting integral points on
further classes of homogeneous varieties, relying on the landmark measure classi�-
cation results of Ratner [171], was subsequently devised by Eskin, Mozes and Shah
in [60].

Especially, but not solely, in light of number-theoretic applications, there is nowa-
days widespread interest and intensive research in the �eld of homogeneous dy-
namics revolving around the fundamemtal quest to establish e�ective versions of
diverse equidistribution phenomena. Without purporting completeness of any sort,
we mention, by way of example, the work of Einsiedler, Margulis and Venkatesh [52]
on polynomial equidistribution of closed semisimple orbits in homogeneous spaces,
which quantitatively improves upon celebrated, earlier crucial results of Mozes and
Shah (cf. [148]), the work of Green and Tao [76] on quantitative equidistribution
of (necessarily unipotent) orbits on nilmanifolds, and the recent inroads made by
Lindenstrauss-Mohammadi [125] and Lindenstrauss-Mohammadi-Wang [126], pro-
viding the �rst instances of polynomially e�ective equidistribution theorems for
unipotent actions of non-horospherical subgroups. We refer to the introduction
of [125] for an exhaustive account of the history of developments in e�ective homo-
geneous dynamics.

The results we present in Chapter 2 are inscribed in those lines of research, in
that they give a precise asymptotic expansion for averages of su�ciently regular
observables along arbitrary translates of compact orbits on compact quotients of the
special linear groupSL2(R), thereby re�ning Margulis' qualitative equidistribution
phrased in Theorem 1.1.1. The precise statement reads as follows.

Theorem 1.1.3 (cf. Theorem 2.1.21). Let � be a uniform lattice inSL2(R), s > 11=2
a real number. There exists a constantC, depending only on� and on s, such that
the following holds. Letf be a function in the Sobolev spaceW s(� nSL2(R)). Then
there exist, for any positive eigenvalue� of the Laplace-Beltrami operator� on the
hyperbolic surface� nH, functions D +

� f; D �
� f : M � SL2(R) ! C with

X

� 2 Spec(�) \ R> 0

sup
p2 � n SL2 (R); g2 SL2 (R)

jD �
� f (p; g)j � C kf kW s
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such that, for anyp 2 M and anyg 2 SL2(R) with su�ciently large operator norm,

Z

� n SL2 (R)
f dg� mSO2 (R)�p =

Z

� n SL2 (R)
f d vol

+ kgk� 1
op

 
X

� 2 Spec(�) ; �> 1=4

cos (= � logkgkop)D +
� f (p; g) + sin ( = � logkgkop)D �

� f (p; g)

!

+
X

� 2 Spec(�) ; 0<�< 1=4

kgk� (1+ � )
op D +

� f (p; g) + kgk� (1� � )
op D �

� f (p; g)

+ 1f 1=42 Spec(�) g

�
kgk� 1

op D +
1=4f (p; g) + 2 kgk� 1

op logkgkopD �
1=4f (p; g)

�
+ Rf (p; g) ;

(1.1.2)

where� is a root of 1 � 4� in R� 0 [ iR> 0 for any � 2 Spec(�) \ R> 0, and

jR f (p; g)j � C kf kW s (2 logkgkop + 1) kgk� 2
op

for any suchp and g as before.

Here and afterwards,H denotes the hyperbolic plane.
Each summand of the asymptotic expansion in (1.1.2) corresponds to the asymp-
totics of the average, on the translated orbitgSO2(R)�p, of the orthogonal projection
of f onto the Sobolev eigenspaceW s(H � ) � W s(� nSL2(R)) corresponding to the
eigenvalue� for the Casimir operator. The latter, whose de�nition and properties
are reviewed in Section 2.2, plays a decisive role in the harmonic analysis ofSL2(R),
as well as of more general semisimple Lie groups. It acts as an essentially self-adjoint
positive operator on the Hilbert spaceL2(� nSL2(R); vol), which is also the repre-
sentation space of the unitary (Koopman) representation� canonically associated to
the measure-preserving action ofSL2(R) on the probability space(� nSL2(R); vol);
crucially, it belongs to the commutant algebra of the representation� , and there-
fore acts as a scalar multiple of the identity on each of its irreducible components
of � , as a consequence of Schur's lemma. This feature is essential in our proof of
Theorem 1.1.3, as it allows to reduce the analysis to the case off being a Casimir
eigenfunction.
As a matter of fact, we don't prove Theorem 1.1.3 directly; instead, we derive it from
an asymptotics for the equidistribution rate of expanding circle arcs on� nSL2(R),
which in turn we establish via the harmonic-analytical strategy just alluded to.
De�ne the homogeneous �ows(� X

t )t2 R and (r s)s2 R on � nSL2(R) by

� X
t (� g) = � g

 
et=2 0
0 e� t=2

!

; r s(� g) = � g

 
coss=2 sins=2

� sins=2 coss=2

!

;

for every g 2 SL2(R); s; t 2 R. The �ow (� X
t )t2 R corresponds to the geodesic �ow

on the unit tangent bundle of the hyperbolic surface� nH, under identi�cation of
the latter space with the homogeneous space� nSL2(R). The bulk of Chapter 2 is
the proof of the following theorem.
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Theorem 1.1.4 (cf. Theorem 2.1.8). In the setting of Theorem 1.1.3, let� be a
real number in (0; 4� ] and supposef 2 W s(� nSL2(R)). Then there exist, for any
positive Laplace eigenvalue� , continuous functionsD +

�;� f; D �
�;� f : M ! C with

X

� 2 Spec(�) \ R> 0



 D �

�;� f




1
�

C
�

kf kW s ;

such that, for everyp 2 � nSL2(R) and t � 1,

1
�

Z �

0
f � � X

t � r s(p) ds =
Z

M
f d vol

+ e� t
2

 
X

� 2 Spec(�) ; �> 1=4

cos

 
= �
2

t

!

D +
�;� f (p) + sin

 
= �
2

t

!

D �
�;� f (p)

!

+
X

� 2 Spec(�) ; 0<�< 1=4

e� 1+ �
2 tD +

�;� f (p) + e� 1� �
2 tD �

�;� f (p)

+ 1f 1=42 Spec(�) g

�
e� t

2 D +
�; 1=4f (p) + te� t

2 D �
�: 1=4f (p)

�
+ R � f (p; t) ;

(1.1.3)

where
jR � f (p; t)j �

C
�

kf kW s (t + 1) e� t

for any p 2 � nSL2(R) and t � 1.

Observe that the quantity on the left-hand side of (1.1.3) is the average of the func-
tion f along the the circle arcf � X

t � r s(p) : 0 � s � � g � � nSL2(R), whose length
increases exponentially witht. Projecting down to the surface� nSL2(R), we obtain
in Theorem 2.1.12 an asymptotic expansion for the rate of equidistribution of dilating
circle arcs on compact hyperbolic surfaces; this re�nes the e�ective equidistribution
results for expanding circles proven by Randol in [162] via techniques connected
to Selberg's trace formula, and simultaneously yields, to the best of the author's
knowledge, the �rst examples of non-spherically symmetric subsets of� nH whose
dilates equidistribute (e�ectively), answering a question of Strichartz in [201]. More
generally, determining the ergodic behaviour of projections of progressively dilating
sets on compact manifolds was originally asked by Sullivan (cf. [162]); in the Ap-
pendix A, we review and extend the equidistribution theorems of Randol [162] and
Strichartz [201] for toral projections of dilating sets in Euclidean spaces. We note
that the distribution of expanding geodesic circles has recently been thoroughly ex-
amined, from a qualitative standpoint, by Colognese and Pollicott [31] in the more
general zero-curvature setting of translation surfaces. The reader is referred to Sec-
tion 2.1.1 for further details on the history of such problems.
As already mentioned, the argument leading to Theorem 1.1.4 entails some elemen-
tary representation theory of SL2(R). Once the problem is reduced, as outlined
above, to f being an eigenfunction of the Casimir operator� , the crucial observa-
tion is that the second-order partial di�erential equation � f = �f expressing the
eigenvalue condition forf translates into a second-order ordinary di�erential equa-
tion for the function t 7! � � 1 R�

0 f � � X
t � r s(p) ds. Standard harmonic analysis of the



Chapter 1. Introduction 11

compact abelian groupSO2(R) now kicks in and allows to further decomposef into
eigenfunctions of the in�nitesimal generator� of the rotational �ow (r s)s2 R. For
a joint eigenfunction of � and � , the resulting di�erential equation is su�ciently
explicit to be solved analytically, which enables to derive the desired asymptotic
dxpansion (see Theorem 2.1.6 for the case of joint eigenfunctions).
The strategy employed here draws heavily upon Ratner's ingenious proof of quanti-
tative mixing for geodesic and horocycle �ows on �nite-volume hyperbolic surfaces
(see [168]), which has been later adapted to a number of di�erent equidistribution
problems; refer to Section 2.1.6 for the related developments. For joint eigenfunc-
tions of the operators� and � , decay of correlations satisfy an ordinary di�erential
equation which, as in our case, can be explicitly solved. The assumptions needed
on the observables for the mixing rate to hold in [168] are far less restrictive than
those we need to impose in Theorem 1.1.3. What accounts for this di�erence is ul-
timately the nature of the averages under consideration: while decay of correlations
are given byL2-inner products with respect to the volume measure, the averages we
deal with in Theorems 1.1.3 and 1.1.4 are not even well-de�ned forL2-functions, so
that we necessitate a Sobolev embedding theorem to pass from equivalence classes
of functions to su�ciently regular representatives thereof.
Observe that it is possible to prove an e�ective equidistribution statement for ar-
bitrary translates of compact orbits, as in Theorem 1.1.3, starting from Ratner's
optimal mixing rates for the geodesic �ow, by making e�ective the thickening ar-
gument of Margulis described at the beginning of this section. This approach has
been pursued by Benoist and Oh [8] in much greater generality; however, the pro-
cess of replacing lower-dimensional subgroup orbits with measure-theoretically thick
subsets results inevitably in a loss on the asymptotic rate, and would only allow in
our case to show exponential decay of the error term with a non-optimal exponent.
This is the reason why we choose here, instead, to resort directly to Ratner's spectral
approach. Our precise asymptotics is also instrumental in showing, more generally,
equidistribution of circle arcs which are allowed to shrink with an exponential rate
depending on the spectral gap of� nSL2(R).
Following the general counting method of Eskin and McMullen [59], inspired by
Margulis [140], we convert the asymptotic expansion in Theorem 1.1.3 to an asymp-
totic expansion for averaged lattice-point counting fuctions. For everyR 2 R> 0,
let BR � H denote the hyperbolic ball of radiusR centered at the point i . For
any g 2 SL2(R), the notation jg� � i \ BR j stands for the number of points in the
intersection of BR with the � -orbit of i translated by g. Furthermore, we indicate
with mH the hyperbolic area measure onH.

Theorem 1.1.5 (cf. Proposition 2.1.23). Let the assumptions be as in Theorem 1.1.3.
Suppose given a real numbers > 11=2 and a function  2 W s(SL2(R)=�) . There
exist, for any positive Laplace eigenvalue� , functions � +

 ;� ; � �
 ;� : R> 0 ! C with

X

� 2 Spec(�) \ R> 0

sup
R> 0

j� �
 ;� (R)j �

C
2�

k kW s
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such that, for anyR � 1,

covolSL2 (R)(�)
covolSO2 (R)(� \ SO2(R))

Z

SL2 (R)=�

jg� � i \ BR j
mH(BR)

 (g�) d vol(g�) =
Z

SL2 (R)=�
 d vol

+ e� R
2

X

� 2 Spec(� ); �> 1=4

� +
 ;� (R) + � �

 ;� (R)

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 R � +

 ;� (R) + e� 1� �
2 R � �

 ;� (R)

+ 1f 1=42 Spec(�) g

 

e� R
2 � +

 ; 1=4(R) + Re� R
2 � �

 ; 1=4(R)

!

+   (R) ;

where

j  (R)j �
5C
4�

k kW s (R + 1) e� R for any R � 1

for any R � 1. Here, the constantC is the one appearing in Theorem 1.1.3.

In the statement of Theorem 1.1.5, the covolumes of the lattices� and � \ SO2(R)
inside SL2(R) and SO2(R), respectively, are calculated with respect to appropriate
renormalizations of the Haar measures on all the groups involved: see Section 2.1.5.
Recall from Theorem 1.1.2 that the circle problem in the hyperbolic plane asks for
optimal estimates on the error

�
�
�
�
�
j� � i \ BR j

mH(BR)
�

covolSO2 (R)(� \ SO2(R))
covolSL2 (R)(�)

�
�
�
�
�
:

Using approximating identities in the homogeneous spaceSL2(R)=� , it is possible
to deduce from Theorem 1.1.5 the following estimate.

Corollary 1.1.6 (cf. Theorem 2.1.24). Let � � be the spectral gap of the hyperbolic
surface � nH, � � 2 [0; 1) [ iR> 0 a square root of1 � 4� � , and set � � = 1

13(1 � < � � ).
Then, for every " > 0,

�
�
�
�
�
j� � i \ BR j

mH(BR)
�

covolSO2 (R)(� \ SO2(R))
covolSL2 (R)(�)

�
�
�
�
�
= o(e(1� � � + " )R)

as R tends to in�nity.

A �ner estimate on the error was obtained by Selberg in [181] via a deeper spectral
analysis, and still represents the best available upper bound. For the purposes of
a comparison, when� nH has no small eigenvalues, namely when its spectral gap is
strictly larger than 1=4, Selberg's estimate isO(e

2
3 R) while ours is o(e( 12

13 + " )R) for
every " > 0. It is the author's belief that a re�nement of our dynamical method
could at best lead to the mildly sharper estimateo(e( 5

6 + " )R) for every " > 0 (see
Remark 2.1.25).
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1.1.4 A statistical perspective: distributional limit theo-
rems

By virtue of the asymptotic expansion in Theorem 1.1.4, we establish quantitative
statistical limit theorems for circle-arc averages of su�ciently regular observables.
Before proceeding with the precise statement of the results, we discuss the point of
view of distributional limit theorems in ergodic theory in broader terms, as it equally
concerns the content of Chapter 3. Historically, this perspective was �rst pioneered
by Sinai, Ruelle, R. Bowen and Ratner. A great deal of the following discussion is
inspired by the introduction in the survey article [41] of Dolgopyat and Sarig, to
which we refer for a much more extensive treatment of the topic.
The classical strong law of large numbers in probability theory asserts that the em-
pirical means 1

n

P n� 1
i =0 X i of independent identically distributed real-valued random

variables X i with �nite �rst moment converge almost surely to the expected value
E[X 0]. A pillar of ergodic theory is Birkho�'s pointwise ergodic theorem which,
under the equivalence between the theory of measure-preserving systems and the
theory of stationary stochastic processes, might be regarded as a vast generalization
of the strong law of large numbers to non-necessarily independent random processes.
To clarify this point, we recall the statement of the pointwise ergodic theorem, con-
�ning ourselves for simplicity to ergodic systems and referring to [53] for the general
version. If (X; A ; �; T ) is an ergodic probability measure-preserving system and
f : X ! C is a � -integrable function, the time averages (also known as ergodic
averages)1

n

P n� 1
k=0 f � Tk(x) converge, for� -almost every point x 2 X , to the space

average
R

X f d� . Suppose now(X j ) j 2 N is a sequence of independent identically
distributed real-valued random variables with �nite �rst moment and common law
� . We manufacture an ergodic system out of them in the following manner: de�ne
X = RN, A = ( BR)
 N (where BR is the standard Borel� -algebra onR), � =

Q
N �

and let T : X ! X be the left-shift map T((xn )n2 N) = ( xn+1 )n2 N. Since the pro-
cess(X j ) j 2 N is stationary, the mapT preserves the product measure� ; moreover, a
rather straightforward application of Kolmogorov's0-1 law (cf. [106]) yields ergod-
icity of � with respect to T. If f : X ! R is the (� -integrable) projection onto the
�rst coordinate, then it is a matter of simple veri�cation that Birkho�'s pointwise
ergodic theorem forf translates into the strong law of large numbers for the process
(X j ) j 2 N.
In light of the previous considerations, it appears natural to examine the validity of
the classical central limit theorem for independent random variables in the broader
context of ergodic systems. Speci�cally, adhering with our previous notation, the
interest lies in the distributional behaviour of the random variables

P N � 1
n=0 f � Tn (x) � N

R
X f d�

p
N

(1.1.4)

as N tends to in�nity, when the point x is randomly sampled according to the
measure� and assuming that f is square-integrable with respect to� . It takes
a moment to realize that a full analogue of the central limit theorem cannot hold
in such a generality. Indeed, consider the two-point discrete spaceX = f 0; 1g with
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the transformation T exchanging0 and 1 preserving the ergodic probability measure
� = 1

2(� 0+ � 1); it is plain that no function f : f 0; 1g ! R can veri�y the property that
the ensuing random variables in (1.1.4) converge in distribution towards a Gaussian
random variable with strictly positive variance. Loosely speaking, the system lacks
su�cient randomness in order to produce such a limiting behaviour7.
Apart from �nite systems, the most elementary example of measure-preserving er-
godic transformation is arguably an irrational rotation x 7! x + � , � 2 R n Q, on
the one-dimensional torusT = R=Z, leaving the Lebesgue measurem invariant. As
opposed toBernoulli shifts of the type we have encountered earlier in this section,
the system displays an orderly behaviour which, once again, prevents a central limit
theorem for ergodic averages to hold in full generality. It so happens that, given
a function f : T ! R of bounded variation, there is a strictly increasing sequence
(qn )n2 N of natural numbers such that the di�erencej

P qn
j =0 f � T j � qn

R
T f dmj is

uniformly bounded by the total variation8 of f for all n. As a result, the random
variables in (1.1.4) converge uniformly to zero along the subsequence(qn )n2 N, so that
no central limit theorem can hold. It turns out that the are subsequences of times
along which convergence to a non-trivial Gaussian distribution does hold; what is
more, it is possible to fabricate measurable observablesf for which the sequence
in (1.1.4) converges in distribution to any preassigned real random variable.
In order to take into account the possible emergence of non-Gaussian limiting dis-
tributions, as well as of rescaling factors9 in (1.1.4) di�erent from

p
N , we say

(following [41]) that, given an ergodic measure-preserving system(X; A ; �; T ), the
ergodic sums of an integrable functionf : X ! R satisfy a spatial distributional
limit theorem if there exist sequences(AN )N 2 N; (BN )N 2 N of real numbers, with
BN ! 1 as N ! 1 , such that the random variables

P N � 1
n=0 f � Tn (�) � AN

BN

converge in distribution, asN tends to in�nity, to a non-trivial real-valued random
variable Y. Similarly, if (� t )t2 R is an ergodic measure-preserving �ow on a proba-
bility space (X; A ; � ), the ergodic integrals of an integrable functionf : X ! R are
said to satisfy a spatial distributional limit theorem if the random variables

RT
0 f � � t (�) dt � AT

BT

converge in distribution, asT tends to in�nity, towards a non-trivial random variable
Y, for some collections of real numbers(AT )T 2 R> 0 ; (BT )T 2 R> 0 with BT ! 1 as
T ! 1 .

7The reader might consider the given example to be a little dull. We feel obliged to remind
him/her that Bergelson and Richter have recently o�ered in [14] a dynamical proof of the cele-
brated Prime Number Theorem, which rests upon a striking generalization of the pointwise ergodic
theorem for the uniquely ergodic two-point system under consideration.

8This is known as the Denjoy-Koksma inequality, and it holds more generally for any toral
di�eomorphism with irrational rotation number; we refer to Herman's original article [87].

9This occurs in several examples of major interest, such as the horocycle �ow on compact
hyperbolic surfaces: see [27] or [175].
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It stands to reason to expect a standard central limit theorem, that is, a spatial
distributional limit theorem with Gaussian limit, AT = T

R
X f d� and BT =

p
T

(T 2 N or T 2 R> 0), to hold whenever the random variablesf � � t1 ; f � � t2 decorre-
late su�ciently fast as t1 � t2 ! 1 , for instance in the case of exponentially mixing
systems; in this case, ergodic integrals might conceivably be well approximated
by integrals of independent identically distributed random variables, for which the
classical central limit theorem is known to hold. A vast class of systems enjoying
exponential decay of correlations is given by contact Anosov �ows of su�ciently
high regularity class on compact Riemannian manifolds (a result due �rst to Dolgo-
pyat [40], under additional assumptions on stable and unstable foliations, and later
extended by Liverani [128]); for such systems, and more generally for transitive
Anosov �ows of classC 2, a standard central limit theorem does indeed hold, for
any Hölder-continuous test function, as shown by Ratner in [164] much earlier than
exponential decay of correlations was known. Analogous results have been shown
in more general classes of hyperbolic systems. On the other side of the spectrum of
ergodic systems are those of zero entropy, for which the problem of existence of a
spatial distributional limit theorem (just like several other dynamical questions) is
poorly understood; see [41] for a complete bibliography pertaining to those as well
as to hyperbolic systems.
Geodesic �ows on negatively curved manifolds are the prime example of smooth
transitive Anosov �ows. However, we are not dealing with the already understood
distributional behaviour of ergodic integrals along geodesic orbits; rather, we are
interested in averages along geodesic translates of circle arcs, as in the statement of
Theorem 1.1.4, which we know converge to the spatial average of the given observable
over the whole space. By analogy with the case of ergodic integrals, we say that the
averages� � 1 R�

0 f � � X
t � r s(p) ds satisfy a spatial distributional limit theorem if there

exist collections(AT )T 2 R> 0 and (BT )T 2 R> 0 with BT ! 1 as T ! 1 such that the
random variables

eT ( 1
�

R�
0 f � � T � r s(�) ds) � AT

BT

converge in distribution towards a non-trivial random variableY. Observe that mul-
tiplying the circle-arc averages by a factoreT is the alleged correct renormalization
if we are to expect a non-trivial distributional behaviour in the limit, in light of the
fact that the length of the circle arc f � T � r s(p) : 0 � s � � g grows like eT . A
full analogue of the central limit theorem would thus correspond to a renormalizing
factor BT = eT=2; however, this turns out to be a correct guess only if there exists
some� > 1=4 in the spectrum of the Laplacian on� nH for which the coe�cient
D �

�;� f appearing in the asymptotic expansion (1.1.3) does not vanish identically on
� nSL2(R), and no Laplace eigenvalue� � 1=4 ful�lls this property. More precisely,
we manage to deduce from Theorem 1.1.4 a quantitative spatial distributional limit
theorem for circle-arc averages of a broad class of Sobolev functions. LetdLP denote
the Levi-Prohorov metric on the space of Borel probability measure onR (whose
de�nition is recalled in Section 2.6.1). In the following statement, notation is as in
Theorem 1.1.4.



16 1.1. Equidistribution in dynamics on homogeneous spaces

Theorem 1.1.7 (cf. Proposition 2.1.16). Let f be a real-valued function on� nSL2(R)
satisfying the assumptions of Theorem 1.1.4. Assume further that there exists
� 2 Spec(�) \ R> 0 such that the functionD �

�;� f does not vanish identically on
� nSL2(R). Let � � be the spectral gap of� nH, � � 2 [0; 1) [ iR> 0 a square root of
1 � 4� � , and de�ne the probability measuresP circ

�;f (T); P �;f (T); P �;f and the value
� f as in Section 2.1.4.

1. If 0 < � f < 1=4, then there is an explicit constant� f > 0, depending only on
� f and on Spec(� ), such that

dLP (P circ
�;f (T); P �;f ) �

C
�

kf kW s Te� � f T

for any T � 1.

2. If � f = 1=4, then there exists a constantCpos, depending only on
Spec(� ) \ R> 0, such that

dLP (P circ
�;f (T); P �;f (T)) �

CCpos

�
kf kW s T � 1

for any T � 1.

3. If � f > 1=4, then:

(a) when � � < 1=4,

dLP (P circ
�;f (T); P �;f (T)) �

C
�

kf kW s e� � �
2 T

for any T � 1;

(b) when � � � 1=4,

dLP (P circ
�;f (T); P �;f (T)) �

C
�

kf kW s (T + 1) e� T
2

for any T � 1.

A similar result holds whenD �
�;� f vanishes identically for every positive Laplace

eigenvalue� but there is at least one of those� for which D +
�;� is not identically

zero. Also, we note that Theorem 1.1.7 applies verbatim to the case where the initial
point p 2 � nSL2(R) is sampled according to an arbitrary Borel probability measure;
it simply su�ce to replace the laws of the limiting random variables accordingly.
Remarkably, the limiting distributions P �;f have compact support, and hence are
certainly not Gaussian. The same holds true in the case of the horocycle �ow on
compact hyperbolic surfaces (cf. [27] or [175]).
In the remaining case whereD �

�;� f � 0 for any positive Laplace eigenvalue� , we
leverage the explicit expressions of the coe�cients in the asymptotic expansion which
correspond to non-positive Laplace eigenvalues in order to show that no spatial
distributional limit theorem can hold for full circles.
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Theorem 1.1.8 (cf. Theorem 2.1.18). Let f be a real-valued function on� nSL2(R)
satisfying the assumptions of Theorem 1.1.4. Assume that, for any
� 2 Spec(�) \ R> 0, the functions D �

4�;� f vanish identically on � nSL2(R). Then,
for any collection (BT )T > 0 of positive real numbers such thatBT ! 1 as T ! 1 ,
the distributional limit of the random variables

eT
�

1
4�

R4�
0 f � � X

T � r s(�) ds �
R

M f d vol
�

BT

as T ! 1 is almost surely equal to zero.

Let us now return to the general discussion about statistical limit theorems in dy-
namics, with the aim of introducing the subject of Chapter 3. The notion of spa-
tial distributional limit theorem is ostensibly of probabilistic nature, and as such
does not provide any information on the behaviour of ergodic sums or integrals for
speci�c initial conditions, the understanding of which is frequently of paramount
importance in light of applications to other mathematical areas such as number the-
ory. If (X; A ; �; (� t )t2 R) is a probability measure-preserving �ow andf : X ! R is
a measurable function, the behaviour of the ergodic integrals

Rt
0 f � � s(x) ds along

the orbit of a point x 2 X , seen as a function of the time parametert, is prone to be
highly oscillatory10 and therefore amenable to a statistical analysis, where the source
of randomness is now given the time parameter, and not any longer by the initial
condition x as in the case of the spatial limit theorem. This point of view stems
from probabilistic number theory, a signi�cant part of which is concerned with the
statistical investigation of oscillatory arithmetic functions. The archetypical result
in this direction is arguably the Erdös-Kac theorem [57] on the sequence! : N� ! N
associating to each positive natural number the number of its prime factors, counted
without multiplicity: the real-valued random variables X N de�ned on the uniform
probability spacef 1; : : : ; Ng as

X N (n) =
! (n) � log logN

p
log logN

; 1 � n � N

converge in distribution, asN tends to in�nity, towards a standard Gaussian random
variable. This motivates the following de�nition, taken once again from [41]. Given
a measure-preserving �ow(X; A ; �; (� t )t2 R) and a � -integrable function f : X ! R,
the ergodic integrals off are said to satisfy a temporal distributional limit the-
orem along the orbit of a point x 2 X if there exist collections of real numbers
(AT )T 2 R> 0 ; (BT )T 2 R> 0 , with BT ! 1 as T ! 1 , such that the family of random
variables Rt

0 f � � s(x) ds � AT

BT
; T > 0;

where t is chosen uniformly at random in the compact interval[0; T], converges in
distribution towards a non-trivial random variable Y.

10The example cited in Section 1.2 of [41] demisti�es this seemingly arcane point.
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It is the purpose of Chapter 3 to present a streamlined proof of a temporal limit
theorem along every orbit of the horocycle �ow on compact hyperbolic surfaces, a
result originally established by Dolgopyat and Sarig in [41]. The precise statement
reads as follows. LetV denote the in�nitesimal generator of the unstable horocycle
�ow on � nSL2(R), and recall that (� X

t )t2 R denotes the geodesic �ow on� nSL2(R).

Theorem 1.1.9 (cf. Theorem 3.3.1). Let � be a uniform lattice in SL2(R), (ht )t2 R

the horocycle �ow on � nSL2(R). Let s > 11=2 be a real number and
f : � nSL2(R) ! R a function in the Sobolev spaceW s(� nSL2(R)) satisfying
R

� n SL2 (R) f d vol = 0. Denote by (f � )� 2 Spec(� ) the collection of orthogonal projec-
tions of f onto the Sobolev eigenspacesW s(H � ) of the Casimir operator� . Suppose
that, for any Casimir eigenvalue� > 0, the function f � is a measurable coboundary
for the �ow (ht )t2 R. If f is not a measurable coboundary for(ht )t2 R, then there
exists � 2 R� such that, for everyp 2 � nSL2(R), the random variables

R(�)
0 f � hs(p) ds +

Rlog T
0 V f0 � � X

s (p) ds
p

logT

converge in distribution, asT ! 1 , towards a centered Gaussian random variable
with variance � 2.

Whereas the argument in [41] relies crucially on the highly non-trivial fact11 that a
function f as in the assumptions of Theorem 1.1.9 di�ers from an harmonic1-form
(for which an application of Stokes' theorem delivers the result rather directly) by
a coboundary for the horocycle �ow, our approach is direct and hinges upon the
asymptotic expansion of horocycle ergodic integrals �rst established by Flaminio
and Forni in [63] and later rediscovered by Ravotti in [175] via a method akin to the
one leading to the proof of Theorem 1.1.4. A thickening argument inspired by [41]
allows then to transfer the problem to the determination of the limiting distributional
behaviour, in the spatial sense, of ergodic integrals of the given test function along
geodesic orbits, which is dictated by the standard central limit theorem (cf. [195]
and [164]).
We remark that it is as yet undecided whether the horocycle ergodic integrals of a
function ful�lling the assumptions of Theorem 1.1.9 satisfy a spatial distributional
limit theorem (cf. the related comments in [41]). For further observations concerning
Theorem 1.1.9, as well as for historical generalities on the horocycle �ow on compact
Riemann surfaces, the reader may directly refer to Chapter 3.

1.2 Discrete group actions and random walks: a
large deviation point of view

It has proven to be highly advantageous to study group actions on homogeneous
spaces, of the type we have hitherto considered, through the probabilistic lenses

11This is a consequence of the deep results of Flaminio and Forni [63] on the cohomological
equation for the horocycle �ow.
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of random walks on matrix groups and their quotients, where the notion of invari-
ant measure (the understanding of which is instrumental in determining the distri-
bution properties of orbits) is fruitfully replaced by the weaker one ofstationary
measure, introduced by Furstenberg in [69]. While invariant probability measures
for actions of non-amenable groups, even on compact spaces, typically fail to ex-
ist, stationary measures do under rather general circumstances (see, for instance,
Sec. 8.8 of [53]). This approach has culminated in the monumental series of arti-
cles [9, 10, 11] of Benoist and Quint, followed by further seminal contributions of
Eskin-Lindenstrauss [58] and Simmons-Weiss [194], to mention only two of the most
striking recent developments in this direction.
The second part of this thesis, presented in Chapter 4, is devoted to the investigation
of some asymptotic statistical properties of random walks in the complementary
setting of discrete �nitely generated groups, and more generally of certain classes of
metric spaces on which they act by isometries. This falls within the scope of a long-
standing tradition of inquiry, consisting in analyzing geometric and algebraic features
of discrete groups and graphs by studying the statistical features of various kinds
of stochastic processes that can be de�ned on them; we refer to the comprehensive
text [133] for a detailed account of this subject, which has found a profusion of
applications beyond the realm of pure mathematics, stretching largely into other
natural and social sciences such as physics, chemistry, theoretical computer science
and sociology.
The inception of this tradition can be traced back to the celebrated work of
Pólya [159] on the recurrence properties of the symmetric simple random walk on
the integer lattice Zd. Starting from the origin 0 2 Zd (or any other initial position,
for that matter), the walker chooses to move randomly to a neighbouring vertex of
the graph, of which there are2d, uniformly with probability 1

2d . The question of
recurrence consists in asking whether the trajectory followed by the walker returns
to its initial position with full probability 12. Pólya's celebrated result on the matter
asserts that the walk is recurrent if and only ifd � 2; in the colourful words of
Kakutani, �a drunk man will eventually �nd his way home, but a drunk bird may
get lost forever�13.
Modelling the random walk considered by Pólya in mathematical language amounts
to choosing a sequence of independent identically distributedZd-valued random
variables (X n )n� 1 taking values � ei , for i = 1; : : : ; d, each with probability 1

2d ,
where(e1; : : : ; ed) is the canonical basis ofRd; the random walk is then de�ned as the
stochastic process(Yn )n2 N given inductively by Y0 = 0, Yn+1 = Yn + X n+1 for every
n 2 N. The process(Yn )n2 N being de�ned only by means of the group operation on
Zd, it readily lends itself to a generalization to other groups. As already mentioned,
we shall con�ne ourselves to �nitely generated groups. Suppose thusG is a �nitely
generated group with identity elemente, equipped with the discrete topology; if

12It is a standard consequence of the Markov property of the walk that, if the trajectory returns
to its initial position with full probability, then it almost surely visits it in�nitely often. On the
other hand, if there is a positive probability of never coming back to the origin, the number of
visits to it is almost surely �nite.

13The quotation is taken from Durrett's textbook [43, p. 191].
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� is a Borel probability measure onG and (X n )n� 1 is a sequence of independent
identically distributed G-valued random variables with law� , then a (right) random
walk on G may be de�ned, by analogy with the case of the Euclidean lattice, as
Y0 = e, Yn+1 = YnX n+1 for any n 2 N, where the juxtaposition xy indicates the
product of two elementsx and y in G. In this case the random walk(Yn )n2 N is said
to have increments distributed according to the law� .

Random walks on arbitrary countable groups were �rst considered in Kesten's the-
sis (cf. the article [102]), where the connection between spectral properties of the
associated Markov operator and the algebraic structure of the groupG is explored.
We shall refrain here from any attempt of reviewing the extensive body of litera-
ture which ensued on the topic, referring instead to the exhaustive bibliographies
in [133, 212]; it is only appropriate to mention that the recurrence question �rst
studied by Pólya is now fully understood for �nitely generated groups thanks to the
result of Varopoulos in [210], according to which a �nitely generated group can only
admit a recurrent symmetric random walk if it is, up to �nite index, either trivial
or equal to Zd for somed � 2.

Returning to sums X 1 + � � � + X n of independent real-valued random variables, a
driving force underlying much of the development of probability theory has been the
investigation of their �ner limiting statistical behaviour. The law of large numbers,
a version of which for a restricted class of random variables is already present in
Jacob Bernoulli's Ars Conjectandi (Latin for �The art of conjecturing�, refer to
the english translation [16]) published in 1713, represents the prototype of such
asymptotic results: it a�rms the heuristically substantiated fact that the empirical
means1

n

P n
i =1 X i converge almost surely to the expected valueE[X i ] (provided this is

well de�ned) of each of the single realizationsX i of the random experiment. As in the
case of recurrence of random walks, the formulation of the statement only involves
the additive group law of the real numbers; it is therefore natural to address the
same question for more general groups. Speci�cally, it was �rst asked and explored
by Furstenberg and Kesten in the sixties (see [70]) to which extent the validity of
the law of large numbers hinges upon the commutativity of the group law onR. It
is shown in [70] that the law appliesverbatim to random matrix products, that is,
to linear groups, provided that the sum is replaced by the logarithm of a Banach-
algebra norm of the product, the latter representing a sort of subadditive measure
of the size of the random walk. A far-reaching generalization was later established
by Guivarc'h in [79], and applies to the renormalized sequence1n `(Yn ) (the sequence
(Yn )n2 N being de�ned as before) for any nonnegative subadditive function� , with
�nite �rst moment with respect to the law of the increments of the random walk, on
any locally compact topological groupG. Incidentally, the general case is nothing
but a speci�c instance of a foundational result in ergodic theory, namely Kingman's
subadditive ergodic theorem (cf. [103]).

A further quintessential example of statistical limit theorem for sums of independent
random variables is the central limit theorem, already postulated by de Moivre in
1733 (in an article later included in his work [147]) and, in a more general form,
by Laplace in his 1812's monumental treatiseThéorie analytique des probabilités
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(cf. [112]). It concerns the limiting distributional behaviour of the error14 commit-
ted when approximating the empirical mean1

n

P n
i =1 X i of square-integrable random

variablesX i with the expected valueE[X 1]; if the di�erence between the two terms
is renormalized so as to have unit variance, the theorem asserts that the law of the
resulting random variable converges, as the timen goes to in�nity, to a centered
Gaussian law. If now(Yn )n2 N is a random walk on an arbitrary groupG, � is a non-
negative subadditive function onG with �nite second moment with respect to the
law of the increments of(Yn )n2 N, and � 2 R� 0 is the limiting value of almost every
trajectory

�
1
n � (Yn )

�

n� 1
as in Guivarc'h's law of large numbers, a full generalization

of the central limit theorem would give that a unit-variance renormalization of the
sequence of di�erences1n � (Yn ) � � converges in distribution to a centered Gaussian
law. In the setting of random matrix products, a statement of this type has been
established under fairly general assumptions on the semigroup generated by the sup-
port of increments' law; we refer to the bibliography in [187]. For countable discrete
groups, versions of the central limit theorem for various types of length functions
have been proven in increasing level of generality by several authors; we summarize
the history of such developments in the introduction to Chapter 4.
The central limit theorem is, in its essence, a qualitative convergence statement15,
inasmuch as it doesn't provide any information on the speed at which the renormal-
ized errors tend to the limiting Gaussian law. The probabilistic theory of large devi-
ations, which �rst received major attention with the foundational work of Donsker
and Varadhan in the seventies and eighties of the last century and lately experi-
enced a renewed surge of interest, can be broadly considered as the outcome of an
attempt, driven primarily but not exclusively by applications to statistical mechan-
ics, to quantify the convergence given by the central limit theorem. We illustrate
the matter by means of a simple, yet informative example16. Suppose(X n )n� 1 is a
sequence of independent Gaussian random variables with zero mean and unit vari-
ance, and consider the sequence(Yn )n� 1 given by Yn = X 1 + � � � + X n for any n � 1.
If � > 0 is a real number, then the probabilityP(jYn j � n� ) that the empirical mean
deviates from its limiting value by at least � is approximated, for largen and in
light of the central limit theorem, by twice the integral

Z 1

�
p

n

1
p

2�
e� x 2

2 dx ; (1.2.1)

which is obviously in�nitesimal in the limit as n goes to in�nity. Whilst it is a simple
exercise to compute the speed of convergence to zero of the integral in (1.2.1), it is
not possible to infer from it the actual rate of convergence ofP(jYn j � n� ), as we
lack crucial information on the quality of the approximation of one quantity by the
other. In view of the exponentially-decaying tail of the Gaussian distribution, it is
intuitively sensible to surmise that the eventfj Yn j � n� g corresponds to the event

14As dictated by the law of large numbers, this error tends to zero almost surely.
15The same might be maintained about the law of large numbers, though the central limit

theorem itself supplies, in a sense, a quantitative version thereof.
16This is taken from the introduction to the classical monograph [39] of Dembo and Zeitouni.
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fj X 1j � �; : : : ; jX n j � � g up to a negliglible error17, at least for large values ofn.
The random variablesX i being independent, this argument leads to the conclusion
that the probabilities P(jYn j � n� ) decay at exponential speed. Rigorously, it is
possible to compute explicitly the limit

lim
n!1

�
1
n

logP(jYn j � n� ) =
� 2

2

by, for instance, a repeated application of L'Hôpital's rule, observing thatYn=n
is a Gaussian random variable of mean0 and variance1=n. The convex function
� 7! � 2=2 thus governs the exponential rate of decay of the probabilities of large
deviations from the mean of the process

�
1
n Yn

�

n� 1
.

The large deviation principle, whose formal de�nition is recalled in Section 4.3, may
be regarded as a versatile abstraction of the properties just examined for the process
of empirical means of Gaussian random variables: it quanti�es the exponential decay
rate of the probability of rare events connected to a certain stochastic process. It
was shown to hold for empirical sums of independent real-valued random variables
by Cramér [34] and Cherno� [30]. Sert proved it in [187] for the Cartan projection
of random walks on semisimple linear algebraic groups, thereby deriving it also for
the sequence of renormalized logarithms of operator norms. The overriding aim
of Chapter 4 is to establish the validity of the large deviation principle, as well
as to examine the analytical properties of the underlying rate function, for the
renormalized distance function from the initial state of random walks on two broad
(partially overlapping) classes of discrete groups: free products of �nitely generated
groups and relatively hyperbolic groups. Speci�cally, we prove the following two
existence results.

Theorem 1.2.1 (cf. Proposition 4.1.3 and Theorem 4.1.8). Let r � 2 be an integer,
G1; : : : ; Gr non-trivial �nitely generated groups, G = G1 � � � � � Gr their free product
equipped with the discrete topology,Si a �nite generating set ofGi for i = 1; : : : ; r ,
S the union of all the Si 's, ` the word length onG determined byS. Let � be
a probability measure onG, and assume its support generates a semigroup� with
the property that, for any i 2 f 1; : : : ; rg, there is an elementg 2 � which neither
starts nor ends in the factorGi . If (Yn )n� 0 is a right random walk onG with incre-
ments distributed according to� , then the sequence of random variables

�
1
n `(Yn )

�

n� 1
satis�es the weak large deviation principle with a convex rate function.

Theorem 1.2.1 applies in particular to free groups of �nite rank, and similarly to
nearest-neighbour random walks on locally �nite regular trees.

Theorem 1.2.2 (cf. Theorem 4.1.8). Let G be a �nitely generated group, hyperbolic
relative to a collection � of peripheral subgroups. AssumeG is non-elementary.
Let S � G be a �nite set generatingG, f H1; : : : ; Hr g a complete set of representa-
tives of the conjugacy classes in� , ` the word length onG determined by the union

17Put di�erently, it is extremely unlikely that a single outcome X j contributes to the sumP n
i =1 X i , in absolute value, much more than the others.
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S [
� S

1� i � r H i

�
. Suppose� is a probability measure onG whose support generates

G as a semigroup, and let(Yn )n� 0 be a right random walk onG with increments dis-
tributed according to� . Then the sequence of random variables

�
1
n `(Yn )

�

n� 1
satis�es

the weak large deviation principle with a convex rate function.

We refer to Section 4.1 for an extensive discussion of the assumptions and of the
degree of generality of Theorems 1.2.1 and 1.2.2. Here we lay stress on the fact
that Theorem 1.2.2 applies equally to several classes of random walks originated
by isometric group actions with contracting elements of non-elementary discrete
groups on geodesic metric spaces, such as groups acting properly and cocompactly
on Gromov-hyperbolic or CAT(0) metric spaces, relatively hyperbolic groups act-
ing on their Cayley graphs with respect to a �nite generating set, mapping class
groups acting on Teichmüller spaces of closed orientable surfaces; see, in particular,
Remark 4.1.10.
We further prove the following strengthening under more restrictive assumptions on
the driving measure of the random walk.

Theorem 1.2.3 (cf. Theorem 4.1.4 and Corollary 4.1.9). Let the assumptions be as
in Theorem 1.2.1 or Theorem 1.2.2.

(1) If � has a �nite exponential moment, then the rate functionI governing the
weak large deviation principle is proper and the sequence

�
1
n `(Yn )

�

n� 1
satis�es

the full large deviation principle with rate functionI .

(2) If � has �nite moment-generating function, thenI is the Fenchel-Legendre
transform of the limiting logarithmic moment generating function of the se-
quence

�
1
n `(Yn )

�

n� 1
.

Finally, we explore in Section 4.6 further properties of the rate function, and signally
its relationship with notable quantities associated to the random walk, such as the
escape rate and the spectral radius.



Chapter 2

Large hyperbolic circles

2.1 Introduction and main results

2.1.1 Dilating sets in diverse geometric contexts

It is an intriguing geometric problem to understand the long-term distribution prop-
erties of a diversi�ed range of progressively dilating shapes, when the ambient space
in which they live is folded according to a prescribed rule. Formally, the framework
underlying such a question can be laid down as follows. Consider a compact con-
nected Riemannian manifoldS and a Riemannian covering spaceN with covering
projection � : N ! S. The manifold N plays the role of the ambient space, while
S is to be interpreted as the manifold resulting after a certain folding procedure
operated onN . A homothety on N is a di�eomorphism h: N ! N transforming
the Riemannian metric onN into a scalar multiple thereof; if the rescaling ratio is
equal to 1, it simply reduces to a Riemannian isometry. Let now(ht )t2 R> 0 be a col-
lection of homotheties onN whose scaling factor tends to in�nity ast does, and �x
a Borel probability measure� on N . The latter should be thought of as describing
quantitatively the original shape, whose dilations we wish to examine. For instance,
� might be the renormalized volume measure on a �nite-volume Riemannian sub-
manifold of N , e.g. a recti�able curve. We then let � t be the push-forward of�
under the homothetyht and denote bymt the projection of � t onto S, for any t > 0.

A mathematical formulation of our problem consists in asking for the limit points,
as t goes to in�nity, of the family of measures(mt )t> 0 in the topology of weak�

convergence of probability measures onS. Somewhat less pretentiously, it is already
interesting to determine su�cient geometric conditions on the initial measure�
ensuring that the mt equidistribute ast grows larger, that is, that they converge in
the aforementioned topology to the renormalized volume measurevolS on S; this
circumstance amounts pictorially to the fact that the measuresmt (and hence, in an
intuitive sense, their supports) �ll up the folded spaceS in the most uniform way.

24
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The Euclidean case

To the best of the authors' knowledge, the question formulated in the previous
paragraph was �rst asked by Dennis Sullivan (cf. [162]) in the zero-curvature setting
of Euclidean spaces and tori, that is, whenS = Td = Rd=Zd and N = Rd for some
integer d � 1, and for � being the volume measure on a compact lower-dimensional
submanifold of Rn . In this case, the transformationsht are the standard linear
homotheties x 7! tx; x 2 Rd. The problem was originally addressed by Randol
in [162], both in an Euclidean and in a hyperbolic setup. In the former case, the
following equidistribution result is established.

Theorem 2.1.1 (cf. [162, Thm. 1]). SupposeC is the smooth boundary of a compact
convex subset ofRd with non-empty interior, and assume its Gaussian curvature
is everywhere positive. Let� be the volume measure onC, renormalized to be a
probability measure. Then the probability measuresmt on Td de�ned by

mt (A) = � (f x 2 Rn : tx + Zd 2 Ag) ; A � Td Borel

equidistribute towards the Haar measure onTd as t ! 1 .

Remark 2.1.2. (a) The result in Theorem 2.1.1 is actually quantitative: for every
su�ciently regular function f on Td, it holds that

�
�
�
�
�

Z

Td
f dmt �

Z

Td
f dmTd

�
�
�
�
�
� f;d t � (d� 1)=2 ;

wheremTd denotes the Haar probability measure onTd.

(b) As a special case of Theorem 2.1.1, expanding spheres inRd equidistribute
on the standard torus with a polynomial rate depending on the dimensiond.
The study of expanding spheres in other geometric settings shall be a driving
theme of this manuscript.

(c) In [162, Thm. 2], equidistribution is generalized to uniform measures supported
on lower-dimensional rectilinear simplices inRd.

The proof of Theorem 2.1.1 (more generally, of its quantitative version stated in
Remark 2.1.2(a)) relies on classical Fourier analysis on thed-dimensional torus; it
is remarkably straightforward, once the decay properties at in�nity of the Fourier
transform of the measure� are known. As such, it has been elaborated upon by
Strichartz in [201] to prove the following generalization of Theorem 2.1.1. Let us
say that the Fourier transform �̂ : Rd ! C of � decays on rays if

lim
t !1

�̂ (tx ) = 0 (2.1.1)

for every nonzero vectorx 2 Rd.

Theorem 2.1.3 (cf. [201, Lem. 1]). Let � be a Borel probability measure onRd

whose Fourier transform decays on rays. Then the conclusion of Theorem 2.1.1
holds true.
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It actually su�ces that �̂ decays on integral rays, that is, that (2.1.1) is veri�ed,
less restrictively, for any non-zerox 2 Zd. On the other hand, it turns out (cf. [201,
Lem. 1]) that decay on arbitrary rays is equivalent to equidistribution of the projec-
tions of the � t onto any torus Rd=� , where� is a lattice in Rd.
To conclude this brief account of the state of the art on the problem in �at geometry,
we mention that the question of the limiting distribution of expanding circles has
been recently examined in the setting of translation surfaces by Colognese and Pol-
licott [31], who prove (non-e�ective) equidistribution towards a probability measure
which is equivalent, though in general not proportional, to the area measure on the
given surface.

The hyperbolic case

As already mentioned, Randol's investigations in [162] were not con�ned to the zero-
curvature case. In the hyperbolic framework, namely when the sectional curvature
is constantly equal to� 1, S is a compact connected hyperbolicd-manifold (d � 2)
and N can be taken as its Riemannian universal covering manifold, that is, thed-
dimensional hyperbolic spaceHd. A choice of the homotheties(ht )t> 0 is determined
by �xing a base point x0 2 Hd and letting ht be the map which transforms1 each
Riemannian geodesic (s) (s 2 R) passing throughx0 at time 0 into the geodesic
 (ts). In this context, the result that can be elicited from the discussion in [162]
reads as follows.

Theorem 2.1.4 (cf. [162]). Let S be a compact connected hyperbolicd-manifold,
� : Hd ! S the universal covering map,C a (d � 1)-dimensional hyperbolic sphere
of unit radius centered at a pointx0 2 Hd, � the unique isometrically-invariant2

Borel probability measure onC, (ht )t> 0 the family of homothetiesHd ! Hd with
center x0 de�ned as above. Then the probability measuresmt on S de�ned by

mt (A) = � (f x 2 Hd : � � ht (x) 2 Ag) ; A � S Borel (2.1.2)

equidistribute towards the renormalized volume measure onS as t ! 1 .

Remark 2.1.5. Here again the result takes on a quantitative form: the rate of
equidistribution of the measuresmt de�ned in (2.1.2) is exponential, as opposed
to the Euclidean case, with the exponent depending on the spectral gap of the
hyperbolic manifold S (cf. [162]).

Akin in spirit to the proof of Theorem 2.1.1, the argument leading to Theorem 2.1.4
is based upon the harmonic analysis of locally symmetric spaces via techniques
related to the Selberg trace formula; for those, the reader is referred to Selberg's
original article [181].

1This produces a well-de�ned assignment, asHd is a uniquely geodesic metric space (cf. [25,
Part I, Chap. 1]) for the distance induced by the hyperbolic Riemannian metric.

2Here we obviously intend invariance under isometries ofC equipped with the induced hyper-
bolic metric.
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Lifting the question to unit tangent bundles

Let us now consider the following upgraded version of the problem explored in the
foregoing paragraphs. Suppose thatS, N and (ht )t> 0 are as in the beginning of
the present section, withy0 2 N being the common center of the homothetiesht ,
and let C be a compact Riemannian hypersurface inN . Assume further that the
Riemannian distance function onN turns it into a uniquely geodesic metric space3.
If T1N denotes the unit tangent bundle ofN , then C identi�es uniquely the subset
~C of T1N consisting of all pairs(x; v), where x is a point in C and v is the unit-
length tangent vector to the unique geodesic connectingy0 to x. Similarly, if Ct

indicates the image ofC under the homothety ht for any t > 0, we denote by ~Ct

its lift to T1N obtained in the previous fashion. A natural question thus arises as
to the asymptotic distribution of the ~Ct when projected to the unit tangent bundle
of S; in this respect, the natural choice of a measure on~Ct is given by the push-
forward of the renormalized volume measure onCt under the canonical identi�cation
of the latter submanifold with its lift ~Ct . If the projections to S of the hypersurfaces
Ct equidistribute towards the normalized volume measure onS, it may be expected
that the projections of the lifts ~Ct equidistribute towards the corresponding Liouville
measure on the unit tangent bundleT1S (cf. [98, Part 1, Sec. 5.4]).
The question lends itself to a description in the language of smooth dynamical
systems. If (g(N )

t )t2 R is the geodesic �ow onT1N (cf. [98, Part 1, Chap. 5]), it
takes a few moments to realize that, for anyt > 1, the set ~Ct is the image of the
original lift ~C under the transformationg(N )

t � 1 ; the same relation holds for the natural
measures carried by the latter sets, and carries over to their projections toT1S,
using the geodesic �ow(g(S)

t )t2 R de�ned on it in place of (g(N )
t )t2 R.

The equidistribution problem in this formulation is treated in Margulis' thesis [140],
which contains several striking developments and applications of the theory of
Anosov systems to the large-scale geometry of negatively curved manifolds; among
those, a proof is provided of equidistribution, towards the Liouville measure, of lifts
of expanding circles on �nite-volume hyperbolic surfaces. For further comments
thereupon, as well as for the connection to the hyperbolic circle problem, the reader
is referred to Section 2.1.5.
It is the chief purpose of the present work to provide a precise asymptotic expan-
sion for the equidistribution rate of lifts of dilating hyperbolic circles, as well as
of arbitrary sub-arcs thereof, on unit tangent bundles of compact hyperbolic sur-
faces; in the vein of the works of Randol [162] and Strichartz [201], we resort to a
spectral approach originating in the work of Ratner [168] on quantitative mixing of
geodesic and horocycle �ows on Riemann surfaces of �nite volume. Section 2.1.3
describes such results and expands on their connection to previous developments,
whereas Sections 2.1.4 and 2.1.5 discuss a number of applications to statistical limit
theorems and the hyperbolic lattice point counting problem.
We conclude this historical overview by pointing out that Margulis' groundbreaking
contributions in [140], together with the gradual emergence of conspicuous applica-

3This is certainly the case for N = Rd and N = Hd, equipped respectively with the standard
Euclidean metric and with the hyperbolic metric.
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tions to counting and Diophantine problems, spawned intensive research aimed at
understanding the asymptotic distribution properties of translates of �nite-volume
subgroup orbits, as well as of more general subsets, on homogeneous spaces4; with-
out purporting to provide an exhaustive list, we mention in this direction the
works [8, 52, 59, 60, 108, 188, 189, 190, 191, 214].

2.1.2 The setup: circles in hyperbolic surfaces and in their
unit tangent bundles

We now set the stage for the main questions we address in the present manuscript,
referring to Section 2.2 for the required background. Let� < SL2(R) be a cocompact
lattice, that is, a discrete subgroup ofSL2(R) such that the quotient space� nSL2(R)
is compact; we indicate the latter homogeneous space withM . The group � acts
properly discontinuously and isometrically on the Poincaré upper half-planeH =
f z = x+ iy 2 C : y > 0g, endowed with the standard hyperbolic Riemannian metric,
by Möbius transformations; when the projection of� to PSL2(R) = SL 2(R)=f� I 2g
is torsion-free, the quotientS = � nH is a compact connected orientable smooth
surface, inheriting a hyperbolic metric fromH. With respect to such a metric, there
is a canonical identi�cation of M with (possibly, a double cover of) the unit tangent
bundle5 T1S.
Let sl2(R) be the Lie algebra of the Lie groupSL2(R), (r s)s2 R the one-parameter
�ow on M de�ned by

r s(� g) = � g

 
coss=2 sins=2

� sins=2 coss=2

!

= � gexps� ; � =

 
0 1=2

� 1=2 0

!

2 sl2(R);

(2.1.3)
and denote by(� X

t )t2 R the geodesic �ow onM , which is given algebraically by

� X
s (� g) = � g

 
et=2 0
0 e� t=2

!

= � gexptX; X =

 
1=2 0
0 � 1=2

!

2 sl2(R): (2.1.4)

For any point p = � g 2 M , the orbit of p under the �ow (r s)s2 R is the preimage of
z = � (p) under the �bration � : M ! S. Therefore, if M identi�es with T1S, then
this set consists of all unit tangent vectors toz 2 S. For any real numbert > 0, the
time-t geodesic evolution� X

t (f r s(p) : s 2 Rg) of the previous set coincides with the
projection to M of the subset ofT1H given by all outward-pointing normal vectors
to the hyperbolic circle in H of radius t centered at (a �xed representative inH of)
z.

4It is worth noticing at this point that lifts of expanding hyperbolic circles represent a particular
instance, as they are geodesic translates of orbits of the maximal compact subgroupSO2(R) on
quotients of SL2(R): see Section 2.1.3.

5More precisely, if � is the preimage under the canonical projection mapSL2(R) ! PSL2(R) of
a cocompact lattice in PSL2(R), then M identi�es with T1S; else, it is a double cover thereof.

In the case where the image of� in PSL2(R) has non-trivial torsion elements, then S has the
structure of an orbifold (cf. [163, Chap. 13]). For the purposes of the paper, we shall never be
concerned with this distinction.
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We indicate with vol the Haar probability measure onM , that is, the unique
SL2(R)-invariant Borel probability measure on M ; under the identi�cation of M
with T1S, it coincides with the Liouville measure projecting to the normalized hy-
perbolic area measure onS. For any r 2 N [ f1g , we denote byC r (M ) the set
of complex-valued functions of classC r de�ned on the smooth manifoldM . The
supremum norm of a continuous functionf : M ! C is denoted bykf k1 . For any
m 2 N� 1, f 2 Cm (M ) and j 2 f 0; : : : ; mg let r j f be the j th covariant derivative
of f and j(r j f )(p)j its norm at a point p 2 M . De�ne then the Cm -norm of f
(cf. [3, Chap. 1]) as

kf kCm =
mX

j =0

sup
p2 M

j(r j f )(p)j : (2.1.5)

Let L2(M ) be the Hilbert space of complex-valued functions onM whose modulus
is square-integrable with respect to the measurevol, and denote by

h�;  i =
Z

M
� � d vol

the inner product of two elements�;  2 L2(M ).
De�ne two additional elements

U =

 
0 1
0 0

!

; V =

 
0 0
1 0

!

in the Lie algebrasl2(R). Identifying elements of the universal enveloping algebra
of sl2(R) with left-invariant di�erential operators on the space C 1 (M ), we de�ne
the Casimir operator as the second-order di�erential operator

� = � X 2 + X � UV : C 2(M ) ! C 0(M ) :

It admits a unique maximal extension to an unbounded self-adjoint operator on
L2(M ); in particular, its spectrum Spec(� ) consists of real numbers. AsM is com-
pact, it is well-known that Spec(� ) is pure point, and is a discrete subset ofR. The
elements of Spec(� ) classify the irreducible representations strongly contained in
the Koopman representation arising from the measure-preserving action ofSL2(R)
on the measure space(M; vol), as belonging to the principal, complementary or dis-
crete series representations if the corresponding eigenvalue� satis�es, respectively,
� � 1=4, 0 < � < 1=4, � � 0. With the normalization we have chosen6, the action
of � on C 2-functions de�ned on the surfaceS is given by the Laplace-Beltrami
operator � S associated to the hyperbolic structure onS.
We are interested in quantitative equidistribution properties of the uniform proba-
bility measures supported on the circle arcs

� X
t (f r s(p) : 0 � s � � g)

6Since sl2(R) is a simple Lie algebra, Casimir elements in its universal enveloping algebra are
uniquely determined up to real scalars.
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as t goes to in�nity, for every �xed p 2 M and � 2 (0; 4� ] (cf. our normalization of
� in (2.1.3), a full circle corresponds to� = 4� ). For any parameter� 2 (0; 4� ] and
any continuous functionf : M ! C, we thus de�ne the function kf;� : M � R ! C
as

kf;� (p; t) :=
1
�

Z �

0
f � � X

t � r s(p) ds ; p 2 M; t 2 R: (2.1.6)

In the forthcoming subsection, we provide a precise asymptotic expansion ofkf;� (p; t)
as t tends to in�nity, �rst for joint eigenfunctions 7 of the operators� and � (Theo-
rem 2.1.6), and then for arbitrary functions ful�lling a suitable regularity condition
(Theorem 2.1.8).

2.1.3 Quantitative equidistribution of expanding translates
of circle arcs

We begin with the case of joint eigenfunctions of the operators� and � . Observe
that the left-invariant vector �eld � 2 sl2(R) acts as an unbounded skew-symmetric
operator on L2(M ); if � f = �f for somef 2 C 1(M ) and � 2 C, then � = i

2n for
somen 2 Z.
In the following statement and throughout, we associate to each� 2 Spec(� ) the
unique complex number� 2 R� 0 [ iR> 0 satisfying 1 � � 2 = 4� .

Theorem 2.1.6. There exist real constants� 0 and � (� ) for any positive Casimir
eigenvalue� such that the following assertions hold. Let� 2 (0; 4� ], � 2 Spec(� )
and n 2 Z, and supposef 2 C 2(M ) satis�es � f = �f , � f = i

2nf . De�ne kf;� (p; t)
as in (2.1.6).

1. If � > 1=4, there exist Hölder-continuous functionsD +
�;�;n f; D �

�;�;n f : M ! C
with Hölder exponent1=2 and



 D �

�;�;n f




1
�

� (� )
�

(n2 + 1) kf kC1

such that, for everyp 2 M and t � 1,

kf;� (p; t) = e� t
2 cos

 
= �
2

t

!

D +
�;�;n f (p)+ e� t

2 sin

 
= �
2

t

!

D �
�;�;n f (p)+ R �;�;n f (p; t);

(2.1.7)
where

jR �;�;n f (p; t)j �
8� 0(n2 + 1)

� = �
kf kC1 e� t : (2.1.8)

2. If � = 1=4, there exist Hölder-continuous functionsD +
�; 1=4;n f : M ! C, with

Hölder exponent1=2 � " for every " > 0, and D �
�; 1=4;n f : M ! C, with Hölder

exponent1=2, and satisfying


 D �

�; 1=4;n f




1
�

� (1=4)
�

(n2 + 1) kf kC1 ;

7As we shall explain in Section 2.2.2, there exists an orthonormal basis ofL 2(M ) consisting of
such joint eigenfunctions; Theorem 2.1.6 is thus to be regarded as a building block for the more
general Theorem 2.1.8.
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such that, for everyp 2 M and t � 1,

kf;� (p; t) = e� t
2 D +

�; 1=4;n f (p) + te� t
2 D �

�; 1=4;n f (p) + R �; 1=4;n f (p; t) ; (2.1.9)

where

jR �; 1=4;n f (p; t)j �
4� 0

�
(n2 + 1) kf kC1 (t + 1) e� t :

3. If 0 < � < 1=4, there exist functionsD +
�;�;n f; D �

�;�;n f : M ! C, respectively
Hö-continuous with Hölder exponent1� �

2 and of classC 1, and satisfying



 D �

�;�;n f




1
�

� (� )
�

(n2 + 1) kf kC1 ;

such that, for everyp 2 M and t � 1,

kf;� (p; t) = e� 1+ �
2 tD +

�;�;n f (p) + e� 1� �
2 tD �

�;�;n f (p) + R �;�;n f (p; t) ; (2.1.10)

where

jR �;�;n f (p; t)j �
4� 0

�� (1 � � )(1 + � )
(n2 + 1) kf kC1 e� t : (2.1.11)

4. If � = 0, there exists a functionG�;n f : M � R> 0 ! C, with G�;n f (�; t) of class
C 1 for any t > 0, G�;n f (p; �) continuous for everyp 2 M and

sup
p2 M; t> 0

jG�;n f (p; t)j �
� 0

�
(n2 + 1) kf kC1

such that, for everyp 2 M and t � 1,

kf;� (p; t) =
Z

M
f d vol + e� t

Z t

1
� G�;n f (p; � ) d� + R �; 0;n f (p; t) ; (2.1.12)

where

jR �; 0;n f (p; t)j �
8e� + � 0

�
(n2 + 1) kf kC1 e� t : (2.1.13)

5. If � < 0 then, for everyp 2 M and t � 1,

jkf;� (p; t)j �
1
�

 
4� 0

(� � 1)(� + 1)
+

2e� (3 + � )
�

!

(n2 + 1) kf kC1 e� t : (2.1.14)

Remark 2.1.7. The asymptotic expansions forkf;� (p; t) are easily transferred to
the case of large negative values of the time parametert, by noticing that

kf;� (p; � t) = kf � r � ;� (r � (p); t)

for any p 2 M and t � 1.
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Taking advantage of Theorem 2.1.6 and of standard harmonic analysis on the group
SL2(R), we establish an asymptotic expansion ofkf;� (p; t) for all su�ciently regular,
but otherwise arbitrary test functions f . De�ne the Laplacian on M to be the
second-order linear di�erential operator� = � � 2� 2. For any s 2 R> 0, let W s(M )
be the Sobolev space of orders on the manifold M , that is, the Hilbert-space
completion of the complex vector spaceC 1 (M ) of smooth functions onM endowed
with the inner product

h�;  i W s = h(1 + �) s�;  i ; �;  2 C 1 (M ):

As M is compact, the well-known Sobolev Embedding Theorem (which we recall in
Theorem 2.2.4) ensures the existence of a continuous embeddingW s(M ) ,! C r (M )
whenevers 2 R> 0 and r 2 N are such that s > r + 3=2; explicitly, there is a
constant Cr;s 2 R> 0 (which for de�niteness we take equal to the operator norm of
the corresponding embedding) such thatkf kC r � Cr;s kf kW s for any f 2 W s(M ).
Hereinafter, an elementf 2 W s(M ) for s > 3=2 is always identi�ed with its unique
continuous representative.
Set

"0 =

8
<

:
1 if 1=4 2 Spec(� ) ;

0 if 1=4 =2 Spec(� ) :
(2.1.15)

Theorem 2.1.8. There exist real constantsCSpec and C0
Spec, depending only on

the spectrum of the Casimir operator onL2(M ), such that the following holds. Let
� 2 (0; 4� ] and s > 11=2 be real numbers, and supposef 2 W s(M ). Then there exist
continuous functionsD +

�;� f; D �
�;� f : M ! C for any positive Casimir eigenvalue� ,

with
X

� 2 Spec(� )\ R> 0



 D +

�;� f




1
+



 D �

�;� f




1
�

C0
SpecC1;s� 3

�
kf kW s ; (2.1.16)

such that, for everyp 2 M and t � 1,

1
�

Z �

0
f � � X

t � r s(p) ds =
Z

M
f d vol

+ e� t
2

 
X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

t

!

D +
�;� f (p) + sin

 
= �
2

t

!

D �
�;� f (p)

!

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 tD +

�;� f (p) + e� 1� �
2 tD �

�;� f (p)

+ "0

�
e� t

2 D +
�; 1=4f (p) + te� t

2 D �
�; 1=4f (p)

�
+ R � f (p; t) ;

(2.1.17)

where

jR � f (p; t)j �
CSpecC1;s� 3

�
kf kW s (t + 1) e� t : (2.1.18)

We record here below the ensuing e�ective equidistribution statement, in which we
single out the two main terms of the asymptotic expansion, thereby highlighting the
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dependence of the latter on the spectral gap of the underlying hyperbolic surface
S = � nH, de�ned as

� � = inf( Spec(� ) \ R> 0) = inf( Spec(� S) n f 0g) ; (2.1.19)

its corresponding parameter is denoted by� � .

Notation. We adopt the classical Landau notationo(� (t)) for � : R> 0 ! R> 0 tend-
ing to zero at in�nity, to indicate a function � : R> 0 ! C such that j� (t)j=� (t) ! 0
as t ! 1 .

Corollary 2.1.9. Let �; s; C 1;s� 3; C0
Spec and f be as in Theorem 2.1.8. Then there

exists a functionD main
� f : M ! C with



 D main

� f




1
�

C0
SpecC1;s� 3

�
kf kW s (2.1.20)

such that, for everyp 2 M and t � 1,

1
�

Z �

0
f � � X

t � r s(p) ds =
Z

M
f d vol + D main

� f (p) t " 0 e� 1�< � �
2 t + o(e� 1�< � �

2 t ) : (2.1.21)

Remark 2.1.10. Using the result of Dyatlov, Faure and Guillarmou in [46] we can
relate the coe�cients D �

�;� f , for 0 < � < 1=4, to the resonant and co-resonant states
in the �rst band for the geodesic �ow (in other words, with the invariant distributions
for the unstable and stable horocycle �ow, respectively). Letu� be a resonant state
for the geodesic �ow associated to the Pollicott-Ruelle resonance� 1� �

2 2 (� 1=2; 0),
and let u�

� be its dual (we refer to [46, Sec.1 and 2] for the relevant de�nitions). In
the language of Flaminio-Forni's work [63],u� is an invariant distribution for the
unstable horocycle �ow, andu�

� is an invariant distribution for the stable horocycle
�ow. By virtue of [46, Thm. 4], we have, for any su�ciently small " > 0 and for
arbitrary f; g 2 C 1 (M ),

hf � � X
t ; gi =

Z

M
f d vol

Z

M
g d vol +

X

� 2 Spec(� )\ (0;1=4)

hf; u � i hu�
� ; gi e� 1� �

2 t

+ O

 

e
�

�
1
2 � "

�
t
!

:

Thus,

hkf;� (�; t); gi =
1
�

Z �

0
hf � � X

t ; g � r � si ds =
Z

M
f d vol

Z

M
g d vol

+
X

� 2 Spec(� )\ (0;1=4)

 
1
�

Z �

0
hf; u � i hu�

� ; g � r � si ds

!

e� 1� �
2 t

+ O

 

e
�

�
1
2 � "

�
t
!

:



34 2.1. Introduction and main results

On the other hand, by Theorem 2.1.8,

hkf;� (�; t); gi =
Z

M
f d vol

Z

M
g d vol +

X

� 2 Spec(� )\ (0;1=4)

hD �
�;� f; g i e� 1� �

2 t

+ O

 

e
�

�
1
2 � "

�
t
!

:

Equating coe�cients, we conclude that the functionsD �
�;� f; 0 < � < 1=4, coincide

as distributions with the corresponding averaged resonant states, namely

D �
�;� f = hf; u � i �

1
�

Z �

0
u�

� � r s ds : (2.1.22)

Of particular interest is the full average� = 4� : in this case,D �
4�;� f is a multiple of

1
4�

R4�
0 u�

� � r s ds, which is an eigenfunction of the Laplacian of eigenvalue� , see [46,
p. 931].
From (2.1.22), we also deduce thatD �

�;� f is identically zero if and only ifhf; u � i = 0,
or, in other words, if and only if f lies in the kernel of the invariant distribution for
the unstable horocycle �ow with Casimir parameter� (see [63, Sec. 3]).
In order to prove an analogous relation between the other coe�cientsD �

�;� f and
the horocycle invariant distributions, we would need an asymptotic expansion of
the correlations for the geodesic �ow as in [66, Thm. 4.3], but with an explicit
dependence of the coe�cients in terms of the stable and unstable horocycle-invariant
distributions.

Remark 2.1.11. We collect here below further comments about Theorem 2.1.6,
Theorem 2.1.8 and Corollary 2.1.9.

1. The Hölder-continuity claims concerning the coe�cientsD �
�;�;n appearing in

Theorem 2.1.6 tacitly involve the choice of a distance functiond on M . It is
intended that d is the Riemannian distance function induced on the connected
manifold M by a Riemannian metricg. The Hölder-continuity property, as
well as the Hölder exponent, ofD �

�;�;n is independent of the choice of such a
g, as any two Riemannian metrics on a compact manifold induce Lipschitz-
equivalent metrics (see [116, Lem. 13.28]).

2. We point out the analogy of Theorem 2.1.6 with the asymptotics of horocycle
ergodic integrals for Casimir eigenfunctions established in [175, Thm. 1] (in the
same way, Theorem 2.1.8 mirrors [175, Thm. 2]). This similarity stems com-
putationally from the application of the exact same spectral method in both
circumstances; as a matter of fact, it comes as no surprise from a geomet-
ric standpoint, for large hyperbolic circles approximate orbits of the unstable
horocycle �ow.

3. For � = 4� , we recover the qualitative equidistribution of expanding circles
towards the uniform measurevol obtained by Margulis in [140].
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4. The equidistribution rate in Corollary 2.1.9 matches exactly the mixing rate
of the geodesic �ow onM obtained by Ratner in [168, Thm. 2].

5. As suggested by the underlying geometric picture, the various upper bounds in
the statements of Theorem 2.1.6 and 2.1.8 indicate that the speed of equidis-
tribution improves as � increases to4� , that is, as the length of the initial
circle arc gets larger.

As a special case of Theorem 2.1.8, we obtain an asymptotic expansion for the
equidistribution rate of � -invariant functions; in other words, we provide the pre-
cise asymptotic behaviour of large circles on the compact hyperbolic surfaceS,
identi�ed, here and afterwards whenever convenient, with the double coset space
� nSL2(R)=SO2(R).
Let dH denote the distance function onH arising from the hyperbolic Riemannian
metric. For any z 2 H and t > 0, let CH(z; t) = f z0 2 H : dH(z; z0) = tg be the
hyperbolic circle of radiust centered atz, and denote byCS(z; t) its projection to S.
With mCS (z;t ) we indicate the projection toS of the unique isometrically-invariant
Borel probability measure supported onCH(z; t). Finally, let mS be the hyperbolic
area measure onS, normalized to be a probability measure.

Theorem 2.1.12. Let � 2 (0; 4� ]; s > 9=2, ~f : S ! C a function such that the
SO2(R)-invariant function f : M ! C de�ned by f (� g) = ~f (� gSO2(R)) for any
g 2 SL2(R) is in W s(M ). Then, for every z = � gSO2(R) 2 S, p = � g 2 M and
t � 1,

Z

S

~f dmCS (z;t ) =
Z

S

~f dmS

+ e� t
2

 
X

� 2 Spec(� S ); �> 1=4

cos

 
= �
2

t

!

D +
4�;� f (p) + sin

 
= �
2

t

!

D �
4�;� f (p)

!

+
X

� 2 Spec(� S ); 0<�< 1=4

e� 1+ �
2 tD +

4�;� f (p) + e� 1� �
2 tD �

4�;� f (p)

+ "0

�
e� t

2 D +
4�; 1=4f (p) + te� t

2 D �
4�; 1=4f (p)

�
+ R 4� f (p; t) :

In particular, the functions R 4� f and D �
4�;� f; � 2 Spec(� S) \ R> 0, de�ned as in

Theorem 2.1.8, areSO2(R)-invariant.

Clearly, an analogous statement holds for arbitrary sub-arcs of the circlesCS(z; t).

Remark 2.1.13. It is worth highlighting that, in the case of an SO2(R)-invariant
observablef , we require mildly less restrictive assumptions on its Sobolev regularity;
this will become relevant in Section 2.7 when we deal with the error rate for the
hyperbolic lattice point counting problem.
Furthermore, we emphasize that Theorem 2.1.12 improves upon the equidistribution
results in [162] (which, on the other hand, apply to any dimension) in a twofold way:
it demands less restrictive conditions on the regularity of test functions and, more
importantly, it re�nes Randol's upper bound on the equidistribution rate by giving
a precise asymptotic expansion.
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Leveraging the explicit dependence of the asymptotics in Theorem 2.1.8 on the upper
bound � of the domain of parametrization of the circle arc under consideration, we
deduce a su�cient quantitative condition for the equidistribution of shrinking pieces
of expanding circles; this is in the vein of Strömbergsson's results in [203], where
the analogous question is investigated for shrinking portions of closed horocycles on
non-closed hyperbolic surfaces of �nite volume.

Corollary 2.1.14. Let p 2 M , � 1; � 2 : R> 0 ! (0; 4� ) two functions with
� 1(t) � � 2(t) for any t > 0, and consider the circle sub-arcs

 t = f � X
t � r s(p) : � 1(t) � s � � 2(t)g :

For any t > 0, let � t be the normalized restriction to t of the unique isometrically-
invariant measure on the corresponding full circle. Assume that there existt0 > 0
and a function � : R> 0 ! R> 0 with � (t) ! 1 as t ! 1 such that

� 2(t) � � 1(t) � � (t)e� 1�< � �
2 t

for any t � t0. Then the circle arcs t equidistribute ast ! 1 : more precisely, the
measures� t converge in the weak� topology, ast ! 1 , towards the uniform measure
vol on M .

2.1.4 Statistical limit theorems for deviations from the av-
erage

The asymptotics in Theorem 2.1.8 a�ords the means to examine the long-term sta-
tistical behaviour of the averages of a given observable along expanding circle arcs.
Historically, a momentous discovery in the twentieth century was the realization that
the long-term evolution of deterministic systems frequently obeys the same statisti-
cal laws governing the asymptotic behaviour of random processes. Speci�cally, this
feature is a typical characteristic of dynamical systems with hyperbolic behaviour,
among which geodesic �ows on negatively curved compact manifolds feature promi-
nently; we refer the reader to the survey in the introduction to [41], as well as to
the references therein, for an extensive discussion of the topic.
Because of the exponential mixing properties of the geodesic �ow(� X

t )t2 R on M
(cf. [168, Thm. 2]), at �rst it stands to reason to expect, for a real-valued func-
tion f on M with �nite �rst moment with respect to the volume measure vol, the
distribution of the deviations from the average

1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol ;

when the base pointp is randomly chosen according to the lawvol, (something
which is henceforth indicated withp � vol), to mimic for large values ofT the law
of the empirical mean

1
N

NX

n=1

X n
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of an increasing numberN of independent real-valued random variablesX n . More
precisely, since the hyperbolic length of a circle of radiusT is proportional to eT

(see the explanation below (2.7.7)), a full analogoue of the classical Central Limit
Theorem in this case would a�rm that the random variables

e
T
2

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

; p � vol

converge in law, asT tends to in�nity, to a normally distributed random variable.
However, the geometric resemblance of large hyperbolic circles to orbits of the un-
stable horocycle �ow, for which similar phenomena occur (cf. [27, Thm. 1.4, 1.5]
and [175, Thm. 4]) accounts both for the emergence of other types of limiting distri-
butions, and for possibly di�erent renormalization factors, depending on the spectral
properties of the observable under consideration.
In order to minimize the di�erence with the classical probabilistic setup of sums of
independent random variables, we shall state all the results in this subsection for
real-valued observables, though the extension to complex-valued ones is immediate.

Theorem 2.1.15. Let � 2 (0; 4� ], s > 11=2, f 2 W s(M ) a real-valued function.
Assume that

� f = inf f � 2 Spec(� ) \ R> 0 : D �
�;� f does not vanish identically onM g

is �nite, and let � f be the unique complex number inR� 0 [ iR> 0 satisfying
1 � � 2

f = 4� f .

1. If 0 < � f < 1=4, the random variables

e
1� � f

2 T

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

; p � vol

converge in distribution toD �
�;� f

f as T ! 1 .

2. If � f = 1=4, the random variables

T � 1e
T
2

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

; p � vol

converge in distribution toD �
�; 1=4f as T ! 1 .

3. If � f > 1=4, the random variables

e
T
2

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

; p � vol

converge in distribution, asT ! 1 , to the quasi-periodic motion

"0D +
�; 1=4f (p) +

X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

T

!

D +
�;� f + sin

 
= �
2

T

!

D �
�;� f

on the set of real-valued random variables de�ned on the probability space
(M; vol).
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Observe the remarkable fact that the limiting distributions appearing in the state-
ment of Theorem 2.1.15 are compactly supported on the real line, owing to the
fact that the coe�cients D �

�;� f are bounded. This stands in stark contrast with
the classical versions of the Central Limit Theorem in probability theory, where in
non-trivial situations the distribution of errors is governed by the fully supported
Gaussian distribution. Furthermore, it is straightforward to check, at least when the
Casimir components off are eigenfunctions of� and using the explicit expressions
of the coe�cients D �

�;� f in (2.4.8), (2.4.9), (2.4.2) and (2.4.13), that the limit law
is non-trivial8, that is, not a Dirac mass. In the general case, the coe�cients are
given by in�nite superpositions of the previous ones; though we shall refrain from a
detailed veri�cation, there is no reason to expect cancellation phenomena to come
about and produce limiting random variables which are constant almost-surely.
Theorem 2.1.15 is a consequence of its quantitative version which we presently dis-
cuss. Forf ful�lling the conditions in Theorem 2.1.15, letP �;f denote the law of the
random variableD �

�;� f
f when � f � 1=4, and P �;f (T) the law of the random variable

"0D +
�; 1=4f (p) +

X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

T

!

D +
�;� f + sin

 
= �
2

T

!

D �
�;� f ; T > 0;

when � f > 1=4. Furthermore, for any T � 1 we let P circ
�;f (T) be:

1. the law of

e
1� � f

2 T

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

if 0 < � f < 1=4;

2. the law of

T � 1e
T
2

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

if � f = 1=4;

3. and the law of

e
T
2

 
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol

!

if � f > 1=4:

Denote bydLP the Lévi-Prokhorov distance on the set of Borel probability measures
on R (cf. Section 2.6.1), which induces on the latter the topology of weak conver-
gence. Recall also that� � denotes the spectral gap ofS = � nH, with associated
parameter � � .

Proposition 2.1.16. Let the assumptions be as in Theorem 2.1.15, and the con-
stants CSpec and C0

Spec be as in Theorem 2.1.8.

8As soon asf is not almost-surely constant, obviously.
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1. If 0 < � f < 1=4, then there is an explicit constant� f > 0, depending only on
� f and on Spec(� ), such that

dLP (P circ
�;f (T); P �;f ) �

C0
SpecC1;s� 3

�
kf kW s Te� � f T

for every T � 1.

2. If � f = 1=4, then there exists a constantCpos, depending only on
Spec(� ) \ R> 0, such that

dLP (P circ
�;f (T); P �;f (T)) �

CposC1;s� 3

�
kf kW s T � 1

for every T � 1.

3. If � f > 1=4, then:

(a) when � � < 1=4,

dLP (P circ
�;f (T); P �;f (T)) �

C0
SpecC1;s� 3

�
kf kW s e� � �

2 T

for every T � 1;

(b) when � � � 1=4,

dLP (P circ
�;f (T); P �;f (T)) �

CSpecC1;s� 3

�
kf kW s (T + 1) e� T

2

for every T � 1.

Entirely analogous deductions, of which we omit the details (cf. Section 2.6.1), can
be made in the case where theD �

�;� f vanish everywhere for any Casimir eigenvalue
� > 0 but D +

�;� f is not identically zero for at least one such� .

Remark 2.1.17. As the proof of Proposition 2.1.16 shall clearly illustrate (see, in
particular, Lemma 2.6.1), the assumption that the base pointp is sampled according
to the uniform measurevol is immaterial, as far as the validity of Proposition 2.1.16
and Theorem 2.1.15 is concerned. It is possible to replace the measurevol with any
other Borel probability measure� on M , without a�ecting the quantitative rate of
convergence, provided that the laws of the limiting random variables are modi�ed
accordingly.

In the remaining case when theD �
�;� f vanish identically on M for any positive

Casimir eigenvalue� , the explicit expressions of the coe�cients appearing in Theo-
rem 2.1.6 and 2.1.8 enable us to rule out the existence of a non-trivial distributional
limit in the case of full circles, that is, when� = 4� . More precisely, we establish
the following result.
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Theorem 2.1.18. Let s > 11=2, f 2 W s(M ) a real-valued function. Assume that,
for any positive Casimir eigenvalue� , the functions D �

4�;� f de�ned as in Theo-
rem 2.1.8 vanish identically onM . Then, for any collection (BT )T > 0 of positive
real numbers such thatBT ! 1 as T ! 1 , the distributional limit of the random
variables

eT
�

1
4�

R4�
0 f � � X

T � r s(p) ds �
R

M f d vol
�

BT
; p � vol

as T ! 1 exists and is almost surely equal to zero.

Theorem 2.1.18 results from approximating averages off along expanding circle
arcs with the di�erence of the ergodic integrals off along two geodesic orbits,
which in the case of complete circles happen to coincide; details are carried out in
Section 2.6.2.

Remark 2.1.19. We hasten to add that the argument we conduct enables to show
that Theorem 2.1.18 holds true for arbitrary circle arcs (that is, it is possible to
replace4� with an arbitrary � 2 (0; 4� ]) provided that, in addition to the vanishing
hypothesis on theD �

4�;� for � 2 Spec(� ) \ R> 0, the derivative Uf 0 along the stable
horocycle �ow of the projectionf 0 of f onto the Casimir eigenspace of eigenvalue0
is assumed to be a coboundary for the geodesic �ow (cf. Section 2.6.2).

2.1.5 Asymptotics for arbitrary translates of compact orbits
and the circle problem in the hyperbolic plane

The celebrated Gauss circle problem asks for the precise asymptotic behaviour of
the discrepancy between the number of integer points in a disk of radiusR in the
Euclidean plane and the area of the disk, asR tends to in�nity. More precisely,
de�ne the integer-point counting function

N (R) = jf (m; n) 2 Z2 : m2 + n2 � R2gj; R 2 R> 0;

wherejAj denotes, here and henceforth, the cardinality of a �nite setA. Tessellating
the Euclidean plane withZ2-translates of[0; 1)2, which is a fundamental domain for
the Z2-action by translations onR2, leads to the main term�R 2, equal to the area
of the disk of radiusR, for the asymptotics ofN (R), as well as to the upper bound
(due to Gauss himself)

jN (R) � �R 2j � 2� (
p

2R + 1)

for the discrepancy. Despite considerable successive improvements on Gauss' original
bound, for the history of which we refer to the comprehensive survey [92], it is
a notoriously unsolved problem to attain the conjectural sharpest upper bound,
deemed to be of the order ofR1=2+ " for any " > 0.
We consider the analogous question in the hyperbolic plane. For� < SL2(R) a
cocompact lattice, we examine the asymptotics of the function

N (R) = jf z 2 � � i : dH(z; i) � Rgj (2.1.23)
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asR tends to in�nity, where � � i denotes the (discrete) orbit9 of i under the � -action
on the hyperbolic planeH and we recall thatdH is the hyperbolic distance function
on H.

Remark 2.1.20. Upon replacing� by a conjugate, there is no loss of generality in
choosingi 2 H as the base point: an elementary algebraic computation, together
with the fact that SL2(R) acts by dH-isometries, leads to the equality

jf z 2 � � w : dH(z; w) � Rgj = jf z 2 g� 1� g � i : dH(z; i) � Rgj

for any w = g � i 2 H and g 2 SL2(R).

There is a compact fundamental domain for the action of� on H, and a transposition
of Gauss' tesselation argument to this setup provides a rationale for the heuristics
concerning the main term of the asymptotics, which once again should be propor-
tional to the hyperbolic area measure of the ballBR = f z 2 H : dH(z; i) � Rg,
which we denote bymH(BR). However, a consequence of the peculiar features of
hyperbolic geometry is that boundary e�ects become relevant, as opposed to the
Euclidean setting: more precisely, the growth rate of the length of the boundary
@BR turns out to be equal to the growth rate ofmH(BR). The error rate resulting
from the tesselation approach is consequently of the same order of the main term,
and as such meaningless.
As for its Euclidean counterpart, the circle problem in the hyperbolic plane has
been the subject of intensive research over the course of the twentieth century, with
fundamental contributions due to Delsarte [37], Selberg [182], Margulis [136], Lax
and Phillips [113] and Phillips and Rudnick [157] (see the introduction to the latter
article for a detailed history of the problem). To a large extent, the state of the art
concerning the best estimate on the error termjN (R) � c� mH(BR)j, wherec� is an
explicit constant which we identify in Theorem 2.1.24, is represented by Selberg's
upper bound

jN (R) � c� mH(BR)j � e(supf 2=3;(1+ < � � )=2g)R ; (2.1.24)

where recall that(1� � 2
� )=4 is the spectral gap ofS = � nH. The estimate10 in (2.1.24)

(which is equally valid for non-uniform lattices� < SL2(R)) is obtained by means of
a deep analysis of a class of integral operators commuting with hyperbolic isometries
(cf. [182]).
It was Margulis' realization (see [140]) that lattice point counting problems of the
type we are examining are intimately interwoven with questions of equidistribution
of translates of subgroup orbits on homogeneous spaces. Subsequently, this novel
perspective was pro�tably pursued and vastly generalized in the works of Duke,
Rudnick and Sarnak [42] and Eskin and McMullen [59]. Specializing to our current

9We thus count the number of actual lattice-orbit elements; we remark that, in the literature,
the count of lattice elements  2 � such that dH( � i; i ) � R often appears instead; the two
quantities are proportional by a factor jStab� (i )j.

10As a matter of fact, Selberg's asymptotics is more accurate than the one recorded here, featur-
ing a main term which involves, beside the hyperbolic area of the balls, additional terms depending
on Laplace eigenfunctions for small eigenvalues; see [157, Eq. 1.13].
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setup, it turns out that the distribution properties of translates of SO2(R)-orbits11

on M = � nSL2(R) lead to meaningful information on the growth rate ofN (R), in
a way that is amenable to quantitative re�nements (see Section 2.7 for an extensive
treatment of the connection in its quantitative form).
We are thus lead to study e�ective equidistribution properties ofSO2(R)-orbits
on M , which can be readily derived from Theorem 2.1.8 via the standard Cartan
decomposition forSL2(R). For any g0 2 SL2(R), de�ne the right-translation map
Rg0 : M ! M by Rg0 (� g) = � gg0 for any g 2 SL2(R). For every p 2 M , we indicate
with mSO2 (R)�p the uniqueSO2(R)-invariant Borel probability measure onM which is
fully supported on the (compact)SO2(R)-orbit of the point p; furthermore, for any
g 2 SL2(R), the notation g� mSO2 (R)�p stands for the push-forward ofmSO2 (R)�p under
the action of g, which clearly depends only on the left coset ofg modulo SO2(R).
Making use of the mixing properties of the globalSL2(R)-action on M via a clever
thickening argument, Margulis proved (see [136, 140]) that arbitrary translates of
mSO2 (R)�p equidistribute towards theSL2(R)-invariant measurevol; this amounts to
the fact that, for any continuous function f : M ! C,

Z

M
f dg� mSO2 (R)�p �!

Z

M
f d vol

as gSO2(R) tends to in�nity in the quotient SL2(R)=SO2(R).
In order to phrase a quantitative version of the previous statement conveniently, we
introduce the notation kgkop to indicate operator norm of an elementg 2 SL2(R)
with respect to the standard Euclidean norm onR2; such a speci�c choice, while
obviously immaterial, arises naturally over the course of the proof.

Theorem 2.1.21. Let CSpec; C0
Spec be as in Theorem 2.1.8,s > 11=2 a real number.

There exists a real constantCs;rot , depending only ons and on M , such that the
following holds: iff 2 W s(M ), then there exist, for any positive Casimir eigenvalue
� , functions D +

� f; D �
� f : M � SL2(R) ! C with

X

� 2 Spec(� )\ R> 0

sup
p2 M; g 2 SL2 (R)

jD �
� f (p; g)j � Cs;rot C0

SpecC1;s� 3 kf kW s ;

such that, for everyp 2 M and everyg 2 SL2(R) with kgkop �
p

e,
Z

M
f dg� mSO2 (R)�p =

Z

M
f d vol

+ kgk� 1
op

 
X

� 2 Spec(� ); �> 1=4

cos (= � logkgkop)D +
� f (p; g) + sin ( = � logkgkop)D �

� f (p; g)

!

+
X

� 2 Spec(� ); 0<�< 1=4

kgk� (1+ � )
op D +

� f (p; g) + kgk� (1� � )
op D �

� f (p; g)

+ "0

�
kgk� 1

op D +
1=4f (p; g) + 2 kgk� 1

op logkgkopD �
1=4f (p; g)

�
+ Rf (p; g) ;

where
jR f (p; g)j � CSpecC1;s� 3Cs;rot kf kW s (2 logkgkop + 1) kgk� 2

op :
11We consider here the canonical left actiong � � g0 = � g0g� 1 of SL2(R) on M .
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Remark 2.1.22. 1. The problem of e�ective equidistribution of translates of
�nite-volume orbits, in the vastly more general context of a�ne symmetric
spaces, was thoroughly explored by Benoist and Oh in [8]. Their approach
relies crucially on e�ective bounds for the mixing rates12 of the relevant global
action, and systematically developes quantitative versions of the geometric
properties which play a major role in the original work [59] of Eskin and
McMullen. In the speci�c instance of the a�ne symmetric space being the
hyperbolic plane H, Theorem 2.1.21 improves upon [8, Thm. 1.10] in that
it quanti�es the exponent governing the equidistribution rate and spells out
additional terms in the asymptotic expansion.

2. Just as in the case of Theorem 2.1.8 and Corollary 2.1.9, the asymptotic expan-
sion in Theorem 2.1.21 delivers at once the (optimal) e�ective equidistribution
bound

�
�
�
�
�

Z

M
f dg� mSO2 (R)�p �

Z

M
f d vol

�
�
�
�
�
� D main f (p; g) (log kgkop)" 0 kgk� (1�< � � )

op

for every p 2 M and g 2 SL2(R) with kgkop �
p

e, where the function
D main : M � SL2(R) ! C is uniformly bounded in terms of an appropriate
Sobolev norm off and of spectral data depending only onM . Following the
thread of the observations expressed in Remark 2.1.11, it is instructive to com-
pare it with the decay rates for matrix coe�cients of unitary representations
of SL2(R) computed by Venkatesh in [211, Sec. 9.1.2].

Theorem 2.1.21 a�ords a precise asymptotic formula for the averaged counting of
points on translates of� -orbits inside balls of increasing radius, that is, for quantities
of the form13

Z

SL2 (R)=�

jg� � i \ BR j
mH(BR)

 (g�) d vol(g�) (2.1.25)

as kgkop tends to in�nity, where  is a su�ciently regular function on SL2(R)=� .
Prior to the statement of the result, we shall �x advantageous normalizations for
the various invariant measures involved (see Section 2.7.1 for the details).
Let mSL2 (R) be the unique choice of Haar measure onSL2(R) such that, if mSO2 (R)

is the probability Haar measure on the compact subgroupSO2(R), then mSL2 (R) is
the (formal) product (cf. Proposition 2.7.2) ofmSO2 (R) and of the SL2(R)-invariant
measure on the homogeneous spaceSL2(R)=SO2(R) which corresponds, under the
canonical identi�cation of the latter space with H, to the hyperbolic area mea-
suremH. We then indicate with mSL2 (R)=� the unique SL2(R)-invariant measure on

12Specializing to our setup, e�ective mixing for the SL2(R)-action on �nite-volume quotients
� nSL2(R) was �rst worked out in detail, to the best of our knowledge, by Kleinbock and Margulis
in [104, Sec. 2.4] (see also [168]).

13As it is customary in the literature addressing such themes, we shall choose to work with
spaces of left cosets whenever dealing with the lattice point counting problem. The map
g� 7! � g� 1 establishes anSL2(R)-equivariant di�eomorphism, between SL2(R)=� and � nSL2(R);
every object we have de�ned on� nSL2(R) shall thus be identi�ed (without altering notation) with
the corresponding object inSL2(R)=� without further comment.
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SL2(R)=� such that mSL2 (R) is the product ofmSL2 (R)=� and the counting measure on
the discrete group� . Observe that mSL2 (R)=� is a scalar multiple of the probability
measurevol, the multiplying factor being equal to the covolume

covolSL2 (R)(�) = mSL2 (R)=� (SL2(R)=�)

of the lattice � inside SL2(R). We denote similarly by covolSO2 (R)(� \ SO2(R))
the volume14 of the compact quotient SO2(R)=(� \ SO2(R)) with respect to the
SO2(R)-invariant measure induced by mSO2 (R) and the counting measure on
� \ SO2(R).
Lastly, recall that BR is the closed hyperbolic ball inH of radiusR > 0 centered ati .

Proposition 2.1.23. Let CSpec; C0
Spec be as in Theorem 2.1.8. Suppose given a real

number s > 11=2 and a function  2 W s(SL2(R)=�) . There exist, for any positive
Casimir eigenvalue� , functions � +

 ;� ; � �
 ;� : R> 0 ! C with

X

� 2 Spec(� )\ R> 0

sup
R> 0

j� �
 ;� (R)j �

C0
SpecC1;s� 3

2�
k kW s (2.1.26)

such that, for everyR � 1,

1
covolSO2 (R)(� \ SO2(R))

Z

SL2 (R)=�

jg� � i \ BR j
mH(BR)

 (g�) dmSL2 (R)=� (g�) =

1
covolSL2 (R)(�)

Z

SL2 (R)=�
 dmSL2 (R)=�

+ e� R
2

X

� 2 Spec(� ); �> 1=4

� +
 ;� (R) + � �

 ;� (R)

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 R � +

 ;� (R) + e� 1� �
2 R � �

 ;� (R)

+ "0

 

e� R
2 � +

 ; 1=4(R) + Re� R
2 � �

 ; 1=4(R)

!

+   (R) ;

(2.1.27)

where

j  (R)j �
5CSpecC1;s� 3

4�
k kW s (R + 1) e� R : (2.1.28)

Recall now our de�nition of the counting function N (R) in (2.1.23). An optimiza-
tion argument involving approximate identities on the homogeneous spaceSL2(R)=�
enables us to derive information on the asymptotic behaviour of the error term in
the pointwise counting problem discussed at the beginning of this subsection.

14A straightfoward application of the formula in (2.7.2) shows that this equals the reciprocal of
the cardinality of the �nite group � \ SO2(R).
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Theorem 2.1.24. Let � : R> 0 ! R> 0 be the function de�ned by

�( R) =
covolSO2 (R)(� \ SO2(R))

covolSL2 (R)(�)
mH(BR) ; R > 0:

Set � � = 1
13(1 � < � � ). Then, for every " > 0,

N (R) = �( R) + o(e(1� � � + " )R)

as R tends to in�nity.

Remark 2.1.25. As it will emerge in the proof of Theorem 2.1.24, which is detailed
in Section 2.7.2, the appearance of the quantity1=13 in the exponent is ultimately
an outgrowth of the minimal Sobolev regularity of the test functionf we need to
impose in Theorem 2.1.12, which in turn is needed because of the upper bounds
in (2.1.16) and (2.1.18) depending on the Sobolev normkf kW s for somes > 9=2. In
this regard, we observe the following: suppose that, in the latter two bounds, the
norm kf kW s can be replaced bykf kW 1 , as it is the case for joint eigenfunctions of
� and � (cf. Theorem 2.1.6); then Theorem 2.1.24 would hold with1=6 in place of
1=13.

2.1.6 Outline of the proofs and layout of the article

The method we employ to prove Theorem 2.1.6 was originally devised by Ratner
in [168], who realized that the problem of �nding mixing rates for geodesic and
horocycle �ows can be reduced to solving a family of linear second-order ordinary
di�erential equations15. This ingenuous and yet fairly elementary approach has been
further developed by Burger in [28] to prove polynomial bounds for the equidistribu-
tion of horocycle orbits in compact quotients ofSL2(R). Later, Strömbergsson [204]
and Edwards [49] exploited the same idea to study e�ective equidistribution prop-
erties of unipotent orbits in more general settings. In the same spirit, Ravotti [175]
recently provided, using Ratner's strategy, an alternative proof of Flaminio-Forni's
asymptotic expansion for horocycle ergodic integrals [63].
We begin in Section 2.2 with an overview of the required notions concerning hy-
perbolic surfaces, Sobolev spaces and harmonic analysis on the Lie groupSL2(R),
nailing down notation to be employed throughout the manuscript. Assuming that
a C 2-observablef is a joint eigenfunction of the Casimir operator and of the vec-
tor �eld � , we then show in Section 2.3 that the behaviour of the circle-arc aver-
ageskf;� (p; �) (see (2.1.6)), viewed as functions of the timet for a �xed base point
p 2 � nSL2(R), ful�ll a second order linear ODE, solving which explicitly leads to

15After the completion of a �rst draft of the present article, the authors were made aware of
the unpublished manuscript [50] by S. Edwards, in which a weaker formulation of the quantitative
equidistribution result in Theorem 2.1.8 is provided. The strategy of proof is entirely analogous to
the one pursued here, and is there applied, more generally, to the quantitative investigation of the
equidistribution properties of translated orbits of symmetric subgroups on homogeneous spaces of
semisimple Lie groups.
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the proof of Theorem 2.1.6 presented in Section 2.4; incidentally, we may arrange
computations so that the latter takes on the same form of the ODE satis�ed by time
rescalings of horocycle averages in [175] (see, in particular, [175, Prop. 8]), which ac-
counts for the similarity between Theorem 2.1.6 with [175, Thm. 1]. In Section 2.5,
the asymptotic expansion of Theorem 2.1.8 is deduced from Theorem 2.1.6 taking
advantage of a few elementary facts from the classical harmonic analysis ofSL2(R).
Additional regularity on f is required in order to ensure the absolute convergence of
the expansion in (2.1.17); see, in particular, Section 2.5.1. The asymptotics for ar-
bitrary translates in Theorem 2.1.21 is derived from Theorem 2.1.8 in Section 2.5.5.
Building on Theorem 2.1.8 once more, we establish in Sections 2.6.1 and 2.6.2 the
distributional limit Theorems 2.1.15 and 2.1.18 for the random variablekf;� (p; t),
appropriately centered and normalized, when the initial pointp is taken randomly
with respect to the uniform measure. These limit theorems mirror those for horo-
cycle ergodic integrals, for which we refer the reader to [27, 175]. Section 2.6.3
hosts a few considerations concerning the point of view of temporal distributional
limit theorems (see [41]) on the problem of analyzing the statistical behaviour of
circle averages. Finally, in Section 2.7, we provide a quantitative treatment of the
approach of Duke-Rudnick-Sarnak [42] and Eskin-McMullen [59], which allows to
prove both Proposition 2.1.23 and Theorem 2.1.24 on the hyperbolic lattice point
counting problem.

2.2 Preliminaries on harmonic analysis on SL2(R)

It is the aim of this section to carefully describe the setting of our main results as
well as to review the background on the representation theory of the groupSL2(R)
which will play a central role throughout the article.

2.2.1 Hyperbolic surfaces and their unit tangent bundles

The subject of this subsection is classical: detailed treatments can be found, for
instance, in [6, 15, 20, 29, 53, 93, 99].
The special linear groupSL2(R) is the group of2� 2 real matrices with determinant
1. It is a three-dimensional Lie group, whose Lie algebra we denote bysl2(R) and
identify canonically with the Lie algebra of traceless2� 2 matrices with real entries.
The identity matrix in SL2(R) is denoted byI 2. A basis ofsl2(R) as a real vector
space is given by the elements

X =

 
1=2 0
0 � 1=2

!

; U =

 
0 1
0 0

!

; V =

 
0 0
1 0

!

:

With exp: sl2(R) ! SL2(R) we indicate the exponential map, and with
Ad: SL2(R) ! GL(sl2(R)), g 7! Adg the adjoint representation of SL2(R) onto
sl2(R).
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Let H = f z = x + iy 2 C : y > 0g be the Poincaré upper-half plane, endowed with
the Riemannian metric

g(x;y ) =
(dx)2 + ( dy)2

y2
; (x; y) 2 H:

The Riemannian manifold(H; g) is a model of the hyperbolic plane, that is, of the
unique complete simply connected two-dimensional Riemannian manifold of con-
stant sectional curvature equal to� 1 (cf. [25, Part 1 Chap. 6]). The Lie group
SL2(R) acts smoothly by orientation-preserving16 isometries of the hyperbolic plane.
The action is given by the Möbius transformations

 
a b
c d

!

� z =
az + b
cz + d

; a; b; c; d2 R; ad � bc= 1; z 2 H;

it is transitive, and thus gives rise to anSL2(R)-equivariant di�eomorphism between
H and the quotient manifold SL2(R)=SO2(R), where the special orthogonal group
SO2(R) is the stabilizer of the point i 2 H.
Let � < SL2(R) be a cocompact lattice17. If the projection of � to the projec-
tive special linear groupPSL2(R) = SL 2(R)=f� I 2g has no non-trivial torsion ele-
ments, then the quotient spaceS = � nH, homeomorphic to the double coset space
� nSL2(R)=SO2(R), is a compact connected orientable smooth surface inheriting
from H a Riemannian metricgS of constant sectional curvature equal to� 1, that
is, a hyperbolic Riemannian metric. Conversely, it is a well-known consequence of
Poincaré-Koebe's Uniformization Theorem (cf. [62, Chap. IV]) that any compact
connected orientable hyperbolic surface is isomorphic, as a Riemannian manifold,
to a quotient � nH where � < SL2(R) is a cocompact lattice with torsion-free pro-
jection on PSL2(R). In case the projection of� to PSL2(R) has non-trivial tor-
sion elements, the quotientS = � nH is, more generally, a hyperbolicorbifold (see
[163, Chap. 13] and [207, Chap. 13]). Unifying, though mildly abusing terminology,
we shall throughout refer toS as a surface in both the previous cases.
The simply transitive action of PSL2(R) on the unit tangent bundle ofH allows to
identify, as smooth manifolds, the unit tangent bundle

T1S = f (p; v) 2 TS : kvkgS
= 1g

of S with the homogeneous spaceM = � nSL2(R). Throughout this manuscript,
we shall solely appeal to the algebraic structure ofM as a homogeneous space of
SL2(R), and not to its geometric nature of principal circle bundle over the surfaceS.
For any r 2 N [ f1g , we denote byC r (M ) the vector space of complex-valued
functions of classC r de�ned on M . It is endowed with the norm k�kC r de�ned
in (2.1.5). The C 0-norm is abbreviated with k�k1 . If f : M ! C is a di�erentiable
function and p is a point in M , we indicate with df p the di�erential of f at p;

16What is more, the action is by analytic transformations of the Riemann surfaceH.
17We recall that a lattice in a locally compact Hausdor� topological group G is a discrete

subgroup� < G such that the quotient space� nG admits a non-zeroG-invariant Radon probability
measure. The lattice � is cocompact if � nG is a compact topological space.
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furthermore, if (@x i ) i =1 ;2;3 is a smooth local frame of the tangent bundleTM around
p, we indicate with @x i jpf the derivative of f at p along the tangent vector@x i jp for
any i = 1; 2; 3.
A vector W 2 sl2(R) gives rise to the one-parameter subgroup(exp(tW )) t2 R of
SL2(R), which in turn acts as a smooth �ow onM by right translations. Whenever
convenient, we identifyW with the in�nitesimal generator (cf. [116, Chap. 9]) of
such a �ow, and denote its action as a derivation on the function spaceC 1(M ) by
f 7! Wf . This assignment extends to an isomorphism of associativeR-algebras
between the universal enveloping algebraU(sl2(R)) of sl2(R) and the algebra of
SL2(R)-invariant di�erential operators on C 1 (M ). More generally, any element
Y 2 U(sl2(R)) of order k 2 N acts naturally on C k(M ), the action being also
denoted byf 7! Y f . Observe that, for anyk 2 N, the de�nition of the C k-norm on
C k(M ) implies that kY f k1 � k f kC k for any Y 2 U(sl2(R)) of order at mostk and
any f 2 C k(M ).

2.2.2 Unitary representations, the Casimir and Laplace op-
erators, Weyl's law

Convenient sources for the material presented in this subsection, in addition to those
cited in Section 2.2.1, are [111, 134, 177, 206].
Let us denote byH be the complex Hilbert spaceL2(M ) of functions which are
square-integrable with respect to the uniqueSL2(R)-invariant Borel probability mea-
sure18 vol on M ; the inner product de�ning the Hilbert space structure onH shall be
denoted byh�; �i . With U (H ) we indicate the group of unitary operatorsT : H ! H .
The standard smooth (left) action ofSL2(R) on the homogeneous spaceM , given
by g0 � � g = � gg� 1

0 for every g0; g 2 SL2(R), preserves the measurevol, and hence
gives rise to a unitary representation� : SL2(R) ! U (H ); g 7! � g, called the
quasi-regular representation ofSL2(R) on H .
For any r 2 N [ f1g , denote by C r (H ) the linear subspace ofC r -vectors onH ,
that is,

C r (H ) = f v 2 H : the map SL2(R) 3 g 7! � g(v) 2 H is of classC r g:

An element W 2 sl2(R) induces a linear operatorLW : C 1(H ) ! H , called the Lie
derivative with respect to W, de�ned by

LW (v) = lim
t ! 0

� exp(tW )(v) � v
t

; v 2 C 1(H ): (2.2.1)

Observe that, for aC 1-function f on M , we haveLW (f ) = Wf , regarding C 1(M )
as canonically embedded19 in H .

18The measure vol is given, on each local trivialization of the unit tangent bundle M , as a
product of the normalized hyperbolic area measure onS and of the unique isometrically-invariant
Borel probability measure on the unit circle S1.

19The measurevol is fully supported on M , therefore C0(M ) embeds linearly in L 2(M ).
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The center of the universal enveloping algebraU(sl2(R)) is generated, as an algebra,
by any of its non-zero elements, called Casimir elements. For reasons to be clari�ed
shortly, we choose the normalization of the Casimir element to be

� = � X 2 + X + UV ;

where f X; U; V g is identi�ed with a set of generators of theR-algebra U(sl2(R)).
By the universal property of the universal enveloping algebra, the Casimir element
� acts as a second-order linear di�erential operatorC 2(M ) ! C 0(M ), and (in
a compatible manner) as an unbounded operator onH , densely de�ned on the
subspaceC 2(H ). Slightly abusing notation, we shall again indicate with� the
Casimir operator arising in this fashion. It is a consequence of the Casimir element
lying in the center of U(sl2(R)) that the operator � commutes with all unitary
operators � g; g 2 SL2(R) and all Lie derivatives LW ; W 2 sl2(R), wherever they
are simultaneously de�ned.
The Casimir operator � is an essentially self-adjoint operator onH ; as M is com-
pact, its spectrum20 Spec(� ) consists solely of eigenvalues and is a discrete subset
of R. Our choice of the normalization of the Casimir element implies that, on the
subspaceC 2(S) of continuously twice-di�erentiable functions de�ned on the sur-
face S = � nH, the Casimir operator acts as the Laplace-Beltrami operator� S

associated to the hyperbolic Riemannian metric onS. As a consequence, the spec-
trum of � S is contained in the spectrum of� . As a matter of fact, it holds that
Spec(� S) = Spec(� ) \ R� 0.
A great deal of research has revolved around the properties of the spectrum of� S;
for the purposes of this article, we shall only need a weaker version (cf. the proof
of Lemma 2.5.1) of the celebrated Weyl's law concerning the asymptotics of the
eigenvalues, which we shall now recall for completeness. For a �nite setA, the
notation jAj stands for the cardinality ofA.

Theorem 2.2.1 (Weyl's law). Let � < SL2(R) be as above,S = � nH, and

� 0 < � 1 � � � � � � n � � � � ! 1

the eigenvalues, counted with multiplicity, of the Laplace-Beltrami operator� S

associated to the hyperbolic Riemannian metric onS. Then

lim
R!1

jf j 2 N : � j � Rgj
R

=
Area(S)

4�
;

whereArea(S) is the total mass ofS with respect to the hyperbolic area measure.

A proof of Theorem 2.2.1 relying on Selberg's trace formula is given in [141, Prop. 10].

20Bargmann's well-known classi�cation of unitary representations of SL2(R) (see [5]) yields that
the spectrum of the Casimir operator classi�es the irreducible representations strongly contained in
� as belonging to the principal series, complementary series or discrete series according to whether
the corresponding Casimir eigenvalue� satis�es � � 1=4; 0 < � < 1=4 or � � 0, respectively. We
do not appeal to Bargmann's classi�cation in this manuscript.
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On the other hand, the negative eigenvalues of� are completely understood, being
of the form � m(m + 2) =4 with m ranging across the setN� of strictly positive
integers.
In general, any unitary representation ofSL2(R) is unitarily equivalent to a direct in-
tegral of irreducible representations. Owing to compactness ofM , the representation
spaceH of � actually decomposes as a Hilbert direct sum of (non-zero)� -invariant
irreducible subspaces:

H =
M

i 2 I

H i ; � (H i ) � H i ; � jH i irreducible; I countable index set:

As the Casimir operator commutes with all the� g for g 2 SL2(R), it restricts
to an operator C 2(H i ) ! H i for each i 2 I . By virtue of Schur's lemma for
unbounded linear operators, there exists� 2 Spec(� ), depending oni , such that
� v = �v for any v 2 C 2(H i ). Regrouping all irreducible subspaces according to the
corresponding Casimir eigenvalue, we obtain an orthogonal splitting into� -invariant
subspaces

H =
M

� 2 Spec(� )

H � ; H � = f v 2 C 2(H ) : � v = �v g: (2.2.2)

Let � 2 sl2(R) be the element de�ned in (2.1.3), inducing the unbounded linear
operator L � on H . As it is the case for any representation space of a unitary
representation ofSL2(R), each subspaceH � is the internal Hilbert direct sum21

H � =
M

n2 Z

H �;n ; H �;n =

(

v 2 C 1(H � ) : L � v =
i
2

nv

)

: (2.2.3)

Remark 2.2.2. Observe that, in the previous decomposition, it might occur (as it
manifestly emerges in the equality (2.2.6) below) thatH �;n is the trivial subspace for
some� 2 Spec(� ) and n 2 Z. For this reason, we let the index set of the direct sum
in (2.2.3) be rather
I (� ) = f n 2 Z : H �;n 6= f 0gg � Z in the sequel, bearing in mind this caveat.

2.2.3 Sobolev spaces and the Sobolev Embedding Theorem

The classical theory of Sobolev spaces is thoroughly discussed in [2]. In the context of
arbitrary Riemannian manifolds, it is presented, for instance, in [3, 84]; the extension
to fractional Sobolev orders is treated e.g. in [200, 208]. Here we shall con�ne
ourselves to homogeneous spaces ofSL2(R), placing emphasis on how this theory is
brought to bear on the study of unitary representations of the special linear group.
De�ne the element

Y =

 
0 � 1=2

� 1=2 0

!

2 sl2(R);

so that f X; � ; Yg forms a basis of the real vector spacesl2(R). De�ne the second-
order linear operator� = � (X 2 + Y 2 + � 2) = � � 2� 2 on the subspaceC 2(H ).

21Complete reducibility of their unitary representations is a general property of compact abelian
groups, in this caseSO2(R).
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As each Lie derivativeLW (W 2 sl2(R)) satis�es22 hLW u; vi = �h u; LW vi for any
u; v 2 C 1(H ), it is clear that h� u; vi = hu; � vi for any u; v 2 C 2(H ), that is, � is
self-adjoint on its domain of de�nition. We shall refer to it as the Laplace operator
on H . Akin to the Casimir operator, � acts as the Laplace-Beltrami operator� S

on the subspaceC 2(S). Indeed, any vectoru 2 C 2(S) is invariant under the action
of SO2(R) by right translations, and hence lies in the kernel ofL � ; as a consequence,

� u = ( � � 2� 2)u = � u � 2L2
� u = � u = � Su :

For any s 2 R> 0, we de�ne the Sobolev space of orders on H , denoted byW s(H ),
as the maximal linear subspace ofH on which the unbounded linear operator� s=2

can be de�ned, and endow it with the inner product given by

hu; vi W s = h(I + �) su; vi ; u; v 2 W s(H ); (2.2.4)

where I denotes the identity operator onH . This assignment turnsW s(H ) into a
Hilbert space, whose associated norm is denoted byk�kW s . Similarly, we de�ne the
Sobolev spacesW s(H � ) and W s(H �;n ) for any � 2 Spec(Z) and n 2 I (� ). It is a
fact that the decompositions in (2.2.2) and (2.2.3) induce analogous decompositions
on the level of Sobolev spaces, namely there are orthogonal23 splittings

W s(H ) =
M

� 2 Spec(� )

W s(H � ) =
M

� 2 Spec(� )

M

n2 I (� )

W s(H �;n ) : (2.2.5)

The argument in Section 2.5 crucially hinges upon the following elementary rela-
tionship between Sobolev norms of di�erent order:

Lemma 2.2.3. Let s 2 R> 0; k 2 N, and assumeu 2 W s+ k(H �;n ) for some
� 2 Spec(� ) and n 2 I (� ). Then

kuk2
W s+ k =

 

1 + � +
n2

2

! k

kuk2
W s : (2.2.6)

Proof. Supposek = 1. We may write, using self-adjointness of� with respect to
the L2-inner product,

kuk2
W s+1 = hu; ui W s+1 = h(I + �) s+1 u; ui = h(I + �) su; (I + �) ui

= h(1 + �) su; ui + h(1 + �) su; � ui :

By the assumption onu, it holds that

� u = ( � � 2� 2)u = � � 2(
i
2

n)2u = ( � +
n2

2
)u :

22This follows at once from the de�nition of L W in (2.2.1) and the fact that � g is a unitary
operator for any g 2 SL2(R).

23Clearly, we intend that the closed subspacesW s(H �;n ) are orthogonal with respect to the
W s-inner product de�ned in (2.2.4).
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Therefore, we infer

kuk2
W s+1 = kuk2

W s +

 

� +
n2

2

!

h(1 + �) su; ui =

 

1 + � +
n2

2

!

kuk2
W s ;

as desired.
The statement for an arbitrary k 2 N follows arguing by induction.

Observe that (2.2.6) readily implies the following: ifu 2 W s+ k(H ) for somes 2 R> 0

and k 2 N, and
u =

X

� 2 Spec(� )

X

n2 I (� )

u�;n

is its decomposition into joint eigenvectors for� and � provided by (2.2.5), then
the larger the integerk is, the faster the decay of the Sobolev normsku�;n kW s asjnj
and j� j tend to in�nity. This phenomenon24 is going to be essential in our estimates
over the course of the proof of Theorem 2.1.8.

We conclude this section recalling a version for compact three-manifolds of the
celebrated Sobolev Embedding Theorem, which will be su�cient for our purposes.

Theorem 2.2.4 (Sobolev Embedding Theorem). For any r 2 N and s 2 R> 0

ful�l ling the inequality s � r > 3=2, there is a continuous embedding ofW s(M ) into
the Banach spaceC r (M ): in particular, there exists a constantCr;s > 0 such that

kf kC r � Cr;s kf kW s

for every f 2 W s(M ).

2.3 Reduction to an ordinary di�erential equa-
tion

This section presents the gist of the approach we pursue in order to prove Theo-
rem 2.1.6, which concerns the asymptotic behaviour of circle-arc averages of joint
eigenfunctions of the operators� and � de�ned in Section 2.2.2; the partial di�eren-
tial equations expressing the eigenfunction condition, which are classically referred
to in the literature as eigenvalue equations for the relevant operator, are here shown
to give rise to ordinary di�erential equations for the corresponding circle-arc aver-
ages, when the latter are seen as functions of the time parameter.
We �x a function f : M ! C of classC 2 and a parameter� 2 (0; 4� ]. Recall
from (2.1.6) the de�nition of the averageskf;� (p; t), for p 2 M and t 2 R. As
the observablef and the base pointp are �xed throughout the considerations that
follow, we choose to abbreviatekf;� (p; t) with k� (t) for notational simplicity.
Our goal is to show that the functionk� (t) satis�es a second-order linear ordinary
di�erential equation (ODE). In the upcoming computations, the following lemma

24The counterpart of this relationship in classical Fourier analysis is well-known; the regularity
of a function is closely interwoven with the decay rate at in�nity of its Fourier coe�cients.
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will be of use. For any left-invariant vector �eld W 2 sl2(R), we indicate with
(� W

t )t2 R be the one-parameter �ow onM de�ned by � W
t (� g) = � gexptW for any

t 2 R and g 2 SL2(R). For any pair Y; W 2 sl2(R) and any point q 2 M , the
derivative of the smooth curves 7! � Y

t � � W
s (q) (seen as a function fromR to the

tangent bundle ofM ), where t 2 R is �xed, is denoted by d
ds � Y

t � � W
s (q). Lastly,

if W 2 sl2(R) and q 2 M , we denote byWq the value at q of the in�nitesimal
generator of the smooth �ow(� W

t )t2 R on M .

Lemma 2.3.1. For every Y; W 2 sl2(R) n f 0g and everyq 2 M , it holds

d
ds

� Y
t � � W

s (q) = Ad exp (� tY )(W)� Y
t � � W

s (q) :

Proof. It follows from elementary algebraic manipulations, see [174, Lem. 4].

We may now state the crucial result of this section.

Proposition 2.3.2. Let � 2 Spec(� ), n 2 Z and f 2 C 2(M ) be a function satis-
fying � f = �f , � f = i

2nf . For every p 2 M and � 2 (0; 4� ], there is a bounded
continuous functionG�;n f (p; �) : R> 0 ! C such that the function

k� (t) =
1
�

Z �

0
f � � X

t � r s(p) ds

satis�es the linear ordinary di�erential equation

k00
� (t) + k0

� (t) + �k � (t) = e� tG�;n (p; t) (2.3.1)

for any t > 0.

Proof. Fix �; n; f; p and � as in the assumptions. Sincef is of classC 2 on M ,
di�erentiation under the integral sign gives

k0
� (t) =

1
�

Z �

0
Xf � � X

t � r s(p) ds; k00
� (t) =

1
�

Z �

0
X 2f � � X

t � r s(p) ds

for any t 2 R, as the geodesic �ow(� X
t )t2 R on M is generated by the vector �eldX .

Therefore, the assumption� f = �f , which when spelled out amounts to

� X 2f + Xf � UV f = �f ;

translates readily into

k00
� (t) � k0

� (t) + �k � (t) = �
1
�

Z �

0
UV f � � X

t � r s(p) ds :

As V = U � 2� , we have

k00
� (t) � k0

� (t)+ �k � (t) = �
1
�

Z �

0
U2f � � X

t � r s(p) ds+
in
�

Z �

0
Uf � � X

t � r s(p) ds ; (2.3.2)
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taking into account the assumption� f = i
2nf . Now, by Stokes' theorem25, we get

that

f � � X
t � r � (p) � f � � X

t (p) =
Z �

0

d
ds

(f � � X
t � r s(p)) ds

=
Z �

0
df � X

t � r s (p)

 
d
ds

(� X
t � r s(p))

!

ds ;

where df � X
t � r s (p) indicates the di�erential of f at the point � X

t � r s(p) and the last
equality follows from the chain rule for di�erentials. Recalling that the �ow (r s)s2 R

is generated by the vector �eld� , Lemma 2.3.1 delivers

d
ds

� X
t � r s(q) = Ad exp(� tX )(�) � X

t � r s (p) ;

so that

f � � X
t � r � (p) � f � � X

t (p) =
Z �

0
df � X

t � r s (p)

�
(Adexp (� tX )(�)) � X

t � r s (p)

�
ds

=
Z �

0
df � X

t � r s (p)

�
(( � sinht)U + et �)) � X

t � r s (p)

�
ds

= � sinht
Z �

0
Uf � � X

t � r s(p) ds +
i
2

n�e tk� (t) ;

the second equality being obtained by straightforward matrix multiplications.
From now we chooset strictly positive. We may thus write

Z �

0
Uf � � X

t � r s(p) ds =
1

sinht

 
i
2

n�e tk� (t) � A � (t)

!

; (2.3.3)

where
A � (t) = f � � X

t � r � (p) � f � � X
t (p) ; t > 0:

Arguing as before, with the functionUf now playing the role off , we also deduce
that

Uf � � X
t � r � (p) � Uf � � X

t (p) =
Z �

0

d
ds

(Uf � � X
t � r s(p)) ds

=
1
2

e� t
Z �

0
U2f � � X

t � r s(p) ds �
1
2

et
Z �

0
V Uf � � X

t � r s(p) ds :

(2.3.4)

From UV � V U = 2X we get

V U = UV � 2X = U(U � 2�) � 2X = U2 � 2U� � 2X ;

so that
Z �

0
V Uf � � X

t � r s(p) ds =
Z �

0
U2f � � X

t � r s(p) ds� in
Z �

0
Uf � � X

t � r s(p)ds� 2�k 0
� (t) :

(2.3.5)

25Here, it really boils down to the fundamental theorem of calculus.
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Combining (2.3.3), (2.3.4) and (2.3.5) yields

Z �

0
U2f � � X

t � r s(p) ds =
1

sinht

 
i
2

net
Z �

0
Uf � � X

t � r s(p) ds + �e tk0
� (t) � B � (t)

!

=
1

sinht

 
inet

4 sinht
(in�e tk� (t) � A � (t)) + �e tk0

� (t) � B � (t)

!

;

(2.3.6)

where
B � (t) = Uf � � X

t � r � (p) � Uf � � X
t (p) ; t > 0:

From (2.3.2), (2.3.3) and (2.3.6) we thus infer that

k00
� (t) � k0

� (t) + �k � (t) =
n2e2tk� (t)
4 sinh2 t

+
inetA � (t)
4� sinh2 t

�
etk0

� (t)
sinht

�
n2etk� (t)
2 sinht

+
� inA � (t) + B � (t)

� sinht
:

Finally, adding 2k0
� (t) on both sides gives

k00
� (t) + k0

� (t) + �k � (t) =

 
n2

(1 � e� 2t )2
�

n2

1 � e� 2t

!

k� (t) +

 

2 �
2

1 � e� 2t

!

k0
� (t)

+

 
in

2� sinht(1 � e� 2t )
�

in
� sinht

!

A � (t) +
B � (t)

� sinht
;

so that the ODE (2.3.1) in the statement is satis�ed for

G�;n f (p; t) =
n2e� t

(1 � e� 2t )2
k� (t)�

2e� t

1 � e� 2t
k0

� (t)+
2ine� 2t

� (1 � e� 2t )2
A � (t)+

2
� (1 � e� 2t )

B � (t) :

(2.3.7)
The function f being of classC 2, it is clear that the functions k� ; k0

� ; A � and B � are
continuous, hence so is the functiont 7! G�;n f (p; t). Furthermore, the trivial upper
bounds

jk� (t)j � k f k1 ; jk0
� (t)j � k Xf k1 ; jA � (t)j � 2kf k1 ; jB � (t)j � 2kUf k1

imply that the latter function is uniformly bounded on R> 0.

For later purposes, we estimate explicitly the supremum norm ofG�;n f . Using the
boundse� t � 1 and 1 � e� 2t � 1 � e� 1, valid for all t � 1=2, together with the fact
that the three quantities kf k1 ; kXf k1 ; kUf k1 are bounded from above bykf kC1

(see Section 2.2.1), we obtain that

sup
t � 1=2

jG�;n f (p; t)j � C�;n kf kC1

whereC�;n may be chosen to be equal to

C�;n =

 
e

e� 1

! 2 n(�n + 2)
�

+
e

e � 1
2� + 2

�
:
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Setting

� 0 =
2e2(1 + 4� )

(e � 1)2
;

we may estimate

C�;n �

 
e

e� 1

! 2 2(� + 1)
�

(n2 + 1) �
� 0

�
(n2 + 1) ;

and hence conclude that

sup
t � 1=2

jG�;n f (p; t)j �
� 0

�
(n2 + 1) kf kC1 (2.3.8)

for every choice ofn 2 Z, f 2 C 2(M ) satisfying � f = i
2nf , p 2 M , and � 2 (0; 4� ].

Remark 2.3.3. The quadratic growth in n of the estimate (2.3.8) shall play a sig-
ni�cant role in the generalization of Theorem 2.1.6 to arbitrary observables, carried
out in Section 2.5; speci�cally, it will impact the minimal Sobolev regularity we need
to impose on the test functions.

2.4 Asymptotics for joint eigenfunctions

The purpose of this section is to prove Theorem 2.1.6 by explictly solving the or-
dinary di�erential equation established in Proposition 2.3.2. For de�niteness, we
choose to impose initial conditions at timet = 1 for the ensuing Cauchy problem.
We thus start with the following:

Lemma 2.4.1. Let � be an eigenvalue of the Casimir operator. IfG: R> 0 ! C is
a continuous function, then for any complex numbersy1 and y0

1 the solution to the
Cauchy problem 8

>><

>>:

y00(t) + y0(t) + �y (t) = e� tG(t)

y(1) = y1

y0(1) = y0
1

(2.4.1)

is given by

y(t) = e� 1� �
2 t

 
(1 + � )y1 + 2y0

1

2�e � 1� �
2

+
1
�

Z t

1
e� 1+ �

2 � G(� ) d�

!

� e� 1+ �
2 t

 
(1 � � )y1 + 2y0

1

2�e � 1+ �
2

+
1
�

Z t

1
e� 1� �

2 � G(� ) d�

! (2.4.2)

if � 6= 1=4, and by

y(t) = e� t
2

 p
e(y1 � 2y0

1)
2

�
Z t

1
�e � �

2 G(� ) d�

!

+ te� t
2

 p
e(y1 + 2y0

1)
2

+
Z t

1
e� �

2 G(� ) d�

! (2.4.3)

if � = 1=4.
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Proof. Let � be the unique complex number inR� 0 [ iR> 0 such that 1 � � 2 = 4� .
The characteristic polynomial of the associated homogeneous equation

y00(t) + y0(t) + �y (t) = 0

is P(Z ) = Z 2 + Z + � , having two distinct roots � 1� �
2 ; � 1+ �

2 if � 6= 1=4, and a
double root � 1

2 if � = 1=4. We examine the case� 6= 1=4; the case� = 1=4 requires
only minor modi�cations. A particular solution of the inhomogeneous equation is
given by

e� 1� �
2 t

Z t

1

1
�

e� 1+ �
2 � G(� ) d� � e� 1+ �

2 t
Z t

1

1
�

e� 1� �
2 � G(� ) d�

as direct computations allow to verify. Hence, the general solution of

y00(t) + y0(t) + �y (t) = e� tG(t)

is given by

y(t) = e� 1� �
2 t

 

c1 +
1
�

Z t

1
e� 1+ �

2 � G(� ) d�

!

+ e� 1+ �
2 t

 

c2 �
1
�

Z t

1
e� 1� �

2 � G(� ) d�

!

;

with c1; c2 2 C. Imposing the initial conditions y(1) = y1; y0(1) = y0
1 enables to

determine the coe�cients

c1 =
(1 + � )y1 + 2y0

1

2�e � 1� �
2

; c2 = �
(1 � � )y1 + 2y0

1

2�e � 1+ �
2

:

We may now apply Proposition 2.3.2 in conjunction with Lemma 2.4.1 to determine
the explicit analytic expression of the circle-arc averagekf;� (p; t), de�ned in (2.1.6),
in terms of the coe�cient G�;n f (p; t) (cf. (2.3.7)). Before proceeding with this, it
will be convenient to introduce some useful notation �rst.
Let � be a Casimir eigenvalue,f a function onM of classC 2 and � 2 (0; 4� ]. De�ne
the functions a+

�;� ; a�
�;� f : M ! C by

a�
�;� f (p) = �

(1 � � )� � 1 R�
0 f � � X

1 � r s(p) ds + 2� � 1 R�
0 Xf � � X

1 � r s(p) ds

2�e � 1� �
2

(2.4.4)

if � 6= 1=4, and by

a�
�; 1=4f (p) =

p
e
�
� � 1 R�

0 f � � X
1 � r s(p) ds � 2� � 1 R�

0 Xf � � X
1 � r s(p) ds

�

2
(2.4.5)

if � = 1=4. When � 6= 1=4, it holds



 a�

�;� f




1
�

(1 + j� j)� � 1 R�
0 kf k1 ds + 2� � 1 R�

0 kXf k1 ds
2e� 1j� j

�
e(3 + j� j)

2j� j
kf kC1 ;

(2.4.6)



58 2.4. Asymptotics for joint eigenfunctions

for kf k1 � k f kC1 and kXf k1 � k f kC1 . If � = 1=4, similar estimates lead readily
to



 a�

�; 1=4f




1
�

3
p

e
2

kf kC1 : (2.4.7)

We are now in a position to start the proof of Theorem 2.1.6, which will occupy
the remainder of this section. We thus �x � 2 (0; 4� ] and a function f 2 C 2(M )
satisfying � f = �f and � f = i

2nf for some� 2 Spec(� ) and n 2 Z. For any
p 2 M , the function kf;� (p; �) : R> 0 ! C we are interested in satis�es the Cauchy
problem (2.4.1) with initial conditions

y1 =
1
�

Z �

0
f � � X

1 � r s(p) ds ; y0
1 =

1
�

Z �

0
Xf � � X

1 � r s(p) ds :

We distinguish �ve cases as in the statement of Theorem 2.1.6, that is, according to
the value of the Casimir eigenvalue� . Recall that � is the unique complex number
in R� 0 [ iR> 0 verifying 1 � � 2 = 4� .

2.4.1 The case � > 1=4

Suppose� > 1=4, so that � = i= � 2 iR> 0. As indicated in (2.4.2), the solution to
the ODE (2.3.1) with the prescribed initial conditions is given by

kf;� (p; t) =

e� t
2 cos

 
= �
2

t

! 

a+
�;� f (p) + a�

�;� f (p) �
2

= �

Z t

1
e� �

2 sin

 
= �
2

�

!

G�;n f (p; � ) d�

!

+ e� t
2 sin

 
= �
2

t

! 

a�
�;� f (p) � a+

�;� f (p) �
2i
= �

Z t

1
e� �

2 cos

 
= �
2

�

!

G�;n f (p; � ) d�

!

for every t > 0. The functions

e� �= 2 cos

 
= �
2

�

!

G�;n f (p; � ); e� �= 2 sin

 
= �
2

�

!

G�;n f (p; � )

are integrable over the closed half-line[1; + 1 ), as G�;n f (p; �) is bounded thereon
(see (2.3.8)); we may therefore de�ne functionsD +

�;�;n f; D �
�;�;n f : M ! C by setting

D +
�;�;n f (p) = a+

�;� f (p) + a�
�;� f (p) �

2
= �

Z 1

1
e� �

2 sin

 
= �
2

�

!

G�;n f (p; � ) d� (2.4.8)

and

D �
�;�;n f (p) = a�

�;� f (p) � a+
�;� f (p) �

2i
= �

Z 1

1
e� �

2 cos

 
= �
2

�

!

G�;n f (p; � ) d� (2.4.9)

for every p 2 M . Then the expansion (2.1.7) is valid with

R �;�;n f (p; t) = e� t
2 cos

 
= �
2

t

! Z 1

t

2
= �

e� �
2 sin

 
= �
2

�

!

G�;n f (p; � ) d�

+ e� t
2 sin

 
= �
2

t

! Z 1

t

2i
= �

e� �
2 cos

 
= �
2

�

!

G�;n f (p; � ) d� :
(2.4.10)
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Let us now estimate the uniform norms ofD �
�;�;n f and of R �;�;n f (�; t) for any t � 1.

From the explicit expressions in (2.4.8) and (2.4.9), it follows at once that



 D �

�;�;n f




1
�



 a+

�;� f




1
+



 a�

�;�





1
+

2
= �

Z 1

1
e� �

2 sup
p2 M; � � 1

jG�;n f (p; � )j d�

�
1

= �

 

e(3 + = � ) +
4� 0(n2 + 1)

�
p

e

!

kf kC1

�
� (� )

�
(n2 + 1) kf kC1

(2.4.11)

applying (2.3.8) and (2.4.6) in the second inequality, with

� (� ) =
1

= �

�
4e� (3 + = � ) +

4� 0p
e

�
:

The remainder term de�ned in (2.4.10) is bounded from above by

jR �;�;n f (p; t)j � 2e� t
2 sup

p2 M; � � 1
jG�;n f (p; � )j

Z 1

t

2
= �

e� �
2 d� �

8� 0(n2 + 1)
� = �

kf kC1 e� t

for every p 2 M and t � 1, again relying on the upper bound in (2.3.8).

Up to the regularity claims on the coe�cients D �
�;�;n f , which are the subject of

Section 2.4.6, the proof of Theorem 2.1.6(1) is complete.

2.4.2 The case � = 1=4

Suppose� = 1=4, whence� = 0. This time the solution to the ODE (2.3.1) with
the given initial conditions has the expression (see (2.4.3))

kf;� (p; t) = e� t
2

 

a+
�; 1=4f (p) �

Z t

1
�e � �

2 G�;n f (p; � ) d�

!

+ te� t
2

 

a�
�; 1=4f (p) +

Z t

1
e� �

2 G�;n f (p; � ) d�

!

for every t > 0. Following the steps carried out in Section 2.4.1 almost verbatim,
de�ne functions D +

�; 1=4;n ; D �
�; 1=4;n : M ! C via

D +
�; 1=4;n f (p) = a+

�; 1=4f (p) �
Z 1

1
�e � �

2 G�;n f (p; � ) d� ;

D �
�; 1=4;n f (p) = a�

�: 1=4f (p) +
Z 1

1
e� �

2 G�;n f (p; � ) d�

for every p 2 M . Then the expansion (2.1.9) holds with

R �: 1=4;n f (p; t) = e� t
2

Z 1

t
�e � �

2 G�;n f (p; � ) d� � te� t
2

Z 1

t
e� �

2 G�;n f (p; � ) d� : (2.4.12)
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From (2.4.2) we estimate, by virtue of (2.3.8) and (2.4.7),



 D �

�; 1=4;n f




1
�

3
p

e
2

kf kC1 +
� 0

�
(n2 + 1) kf kC1

Z 1

1
�e � �

2 d�

=

 
3
p

e
2

+
6� 0

�
p

e
(n2 + 1)

!

kf kC1 �
� (1=4)

�
(n2 + 1) kf kC1 ;

where we may choose� (1=4) = 36�
p

e� 0. Moreover, we deduce from (2.4.12) that,
for every p 2 M and t � 1,

jR �; 1=4;n f (p; t)j �
� 0

�
(n2 + 1) kf kC1

 

e� t
2

Z 1

t
�e � �

2 d� + te� t
2

Z 1

t
e� �

2 d�

!

=
4� 0

�
(n2 + 1) kf kC1 (t + 1) e� t :

In conjunction with the forthcoming Section 2.4.6, this concludes the proof of The-
orem 2.1.6(2).

2.4.3 The case 0 < � < 1=4

When 0 < � < 1=4, we have� 2 (0; 1). The general solution to the ODE (2.3.1)
given in (2.4.2) speci�es to

kf;� (p; t) = e� 1+ �
2 t

 

a+
�;� f (p) �

1
�

Z t

1
e� 1� �

2 � G�;n f (p; � ) d�

!

+ e� 1� �
2 t

 

a�
�;� f (p) +

1
�

Z t

1
e� 1+ �

2 � G�;n f (p; � ) d�

!

for every t > 0. Setting

D +
�;�;n f (p) = a+

�;� f (p) �
1
�

Z 1

1
e� 1� �

2 � G�;n f (p; � ) d� ;

D �
�;�;n f (p) = a�

�;� f (p) +
1
�

Z 1

1
e� 1� �

2 � G�;n f (p; � ) d�
(2.4.13)

and

R �;�;n f (p; t) =
1
�

 

e� 1+ �
2 t

Z 1

t
e� 1� �

2 � G�;n f (p; � ) d� � e� 1� �
2 t

Z 1

t
e� 1+ �

2 � G�;n f (p; � ) d�

!

for every p 2 M and t � 1, it is clear that the expansion (2.1.10) holds. As far as
estimates on the supremum norm are concerned, we have



 D �

�;�;n f




1
�

e(3 + � )
2�

kf kC1 +
� 0

��
(n2 + 1) kf kC1

Z 1

1
e� 1� �

2 � d�

=
1
�

 
e(3 + � )

2
+

� 0

�
2

1 � �
e� 1� �

2 (n2 + 1)

!

kf kC1

�
� (� )

�
(n2 + 1) kf kC1
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with � (� ) = 2� 0e� 1� �
2

� (1� � ) + 2e� (3+ � )
� , and

jR �;�;n f (p; t)j �
� 0

��
(n2 + 1) kf kC1

 

e� 1+ �
2 t

Z 1

t
e� 1� �

2 � d� + e� 1� �
2 t

Z 1

t
e� 1+ �

2 � d�

!

=
4� 0

�� (1 � � )(1 + � )
(n2 + 1) kf kC1 e� t ;

which achieves the proof of Theorem 2.1.6(3) except for the regularity of the coe�-
cients which is addressed separately in Section 2.4.6.

2.4.4 The case � = 0

As � = 1 when � = 0, equation (2.4.2) delivers the following expression for the
solution to the ODE (2.3.1):

kf;� (p; t) = a�
�; 0f (p) +

Z t

1
e� � G�;n f (p; � ) d� + e� t

 

a+
�; 0f (p) �

Z t

1
G�;n f (p; � ) d�

!

= a�
�; 0f (p) +

Z 1

1
e� � G�;n f (p; � ) d� +

 

�
Z 1

t
e� � G�;n f (p; � ) d�

+ e� ta+
�; 0f (p) � e� t

Z t

1
G�;n f (p; � ) d�

!

(2.4.14)

for every t > 0. Observe that the term between parentheses in the last expression
is in�nitesimal as t tends to in�nity, so that kf;� (p; t) has a well-de�ned limit, as t
tends to in�nity, for every p 2 M . We claim that26

lim
t !1

kf;� (p; t) =
Z

M
f d vol (2.4.15)

for any p 2 M . For a start, we show the equality in (2.4.15) holds on average with
respect to the measurevol. Indeed, Fubini's theorem gives, for anyt > 0,

Z

M
kf;� (p; t) d vol(p) =

1
�

Z

M

Z �

0
f � � X

t � r s(p) ds d vol(p)

=
1
�

Z �

0

Z

M
f � � X

t � r s(p) d vol(p) ds

=
1
�

Z �

0

Z

M
f d vol ds =

Z

M
f d vol ;

26The claim amounts to the qualitative equidistribution statement that circle-arc averages of f
converge to its spatial average with respect to the uniform measurevol. This has been shown by
Margulis (for complete circles) in [140] via a thickening argument resting on the mixing properties
of the geodesic �ow. We prefer not to invoke Margulis' result here, and instead prove directly this
version of equidistribution using spectral considerations coupled with mixing.
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the second-to-last equality following from the fact that the transformation
� X

t � r s : M ! M preserves the measurevol for any s; t 2 R. By dominated conver-
gence,

Z

M
lim
t !1

kf;� (p; t) d vol(p) = lim
t !1

Z

M
kf;� (p; t) d vol(p)

= lim
t !1

Z

M
f d vol =

Z

M
f d vol :

(2.4.16)

In order to �nish the proof of the claim, it remains to show that the limit
lim t !1 kf;� (p; t) does not depend onp. Choose a countable orthonormal basis(uk)k2 I

of L2(M ) consisting of smooth eigenfunctions27 of the operator � and containing a
constant function uk0 . If � uk = i

2nkuk for nk 2 Z, then uk � r s = e2�in k suk for every
s 2 R (see Section 2.2.2). Therefore, we can compute for everyk 2 I the L2-inner
product

Z

M
lim
t !1

kf;� (p; t) uk(p) d vol(p) = lim
t !1

Z

M

 
1
�

Z �

0
f � � X

t � r s(p) ds

!

uk(p) dp

= lim
t !1

1
�

Z �

0

Z

M
f � � X

t � r s(p) uk(p) dp ds

= lim
t !1

1
�

Z �

0

Z

M
f � � X

t (p) uk � r � s(p) dp ds

= lim
t !1

1
�

Z �

0
e� 2�in k s

Z

M
f � � X

t (p) uk(p) dp ds

=
1
�

Z �

0
e� 2�in k sds � lim

t !1
hf � � X

t ; uk i ;

where we used, in successive order, the dominated convergence theorem, Fubini's
theorem, invariance of the measurevol under the transformationr � s and the de�ning
property of uk . Mixing of the geodesic �ow(� X

t )t2 R on M ([6, Cor. 2.3]) delivers

lim
t !1

hf � � X
t ; uk i =

Z

M
f d vol

Z

M
uk d vol :

As uk is orthogonal inL2(M ) to the constant uk0 for any k 6= k0, the last expression
vanishes for any suchk. Therefore, we have just shown that the function

p 7! lim
t !1

kf;� (p; t)

is orthogonal touk for everyk 6= k0; necessarily, it must be constant, which achieves
the proof of our claim.

De�ne now
R �; 0;n f (p; t) = a+

�; 0f (p)e� t �
Z 1

t
e� � G�;n f (p; � ) d�

27It is actually a fact that L 2(M ) admits an orthonormal basis consisting of smooth joint eigen-
functions of the operators � and � .
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for every p 2 M and t � 1; then (2.3.8) and (2.4.6) give

jR�; 0;n f (p; t)j � 2ekf kC1 e� t +
� 0

�
(n2 + 1) kf kC1

Z 1

t
e� � d�

=
1
�

�
8e� + � 0(n2 + 1)

�
kf kC1 e� t ;

moreover, combining (2.4.14) with (2.4.15), we obtain in (2.1.12), which establishes
Theorem 2.1.6(4).

2.4.5 The case � < 0

We �nally turn to the case � < 0 or, equivalently, � > 1. The solution to the
ODE (2.3.1) given in (2.4.2) becomes

kf;� (p; t) = e
� � 1

2 t

 

a�
�;� f (p) +

1
�

Z t

1
e� � +1

2 � G�;n f (p; � ) d�

!

+ e� � +1
2 t

 

a+
�;� f (p) �

1
�

Z t

1
e� � � 1

2 � G�;n f (p; � ) d�

! (2.4.17)

for every t > 0. It follows that the quantity

e
� � 1

2 t

 

a�
�;� f (p) +

1
�

Z 1

1
e� � +1

2 � G�;n f (p; � ) d�

!

=

� e� � +1
2 t

 

a+
�;� f (p) �

1
�

Z t

1
e� � � 1

2 � G�;n f (p; � ) d�

!

� kf;� (p; t) +
e

� � 1
2 t

�

Z 1

t
e� � +1

2 � G�;n f (p; � ) d�

is uniformly bounded in t, which forces

a�
�;� f (p) +

1
�

Z 1

1
e� � +1

2 � G�;n f (p; � ) d� = 0

for every p 2 M . Therefore (2.4.17) results in

kf;� (p; t) = e� t

 

�
e

� +1
2 t

�

Z 1

t
e� � +1

2 � G�;n f (p; � ) d� + e� � � 1
2 ta+

�;� f (p)

�
e� � � 1

2 t

�

Z t

1
e

� � 1
2 � G�;n f (p; � ) d�

!

:

With the help of (2.3.8) and (2.4.6), we may estimate the three summands inside
the parentheses. For the �rst, we have

�
�
�
�
�
e

� +1
2 t

�

Z 1

t
e� � +1

2 � G�;n f (p; � ) d�

�
�
�
�
�
�

2� 0

�� (� + 1)
(n2 + 1) kf kC1 ;



64 2.4. Asymptotics for joint eigenfunctions

while the second can be bounded as
�
�
�e� � � 1

2 ta+
�;� f (p)

�
�
� �

e(3 + � )
2�

kf kC1 ;

lastly,
�
�
�
�
�
e� � � 1

2 t

�

Z t

1
e

� � 1
2 � G�;n f (p; � ) d�

�
�
�
�
�
�

2� 0

�� (� � 1)
(n2 + 1) kf kC1 e� � � 1

2 t (e
� � 1

2 t � e
� � 1

2 )

�
2� 0

�� (� � 1)
(n2 + 1) kf kC1 :

We conclude that

jkf;� (p; t)j �
1
�

 
4� 0

(� � 1)(� + 1)
+

2e� (3 + � )
�

!

(n2 + 1) kf kC1 e� t ;

as desired.
This settles Theorem 2.1.6(5).

2.4.6 Regularity of the coe�cients in the asymptotic expan-
sion

We now turn to the examination of the regularity properties of the coe�cients
D �

�;�;n f appearing in the asymptotic expansion ofkf;� (p; t), as in Theorem 2.1.6, for
f 2 C 2(M ) satisfying � f = �f and � f = i

2nf for some� 2 Spec(� ) \ R> 0 and
n 2 Z. In so doing, we shall complete the proof of Theorem 2.1.6.
Let us �x � 2 (0; 4� ] throughout this subsection. As follows readily from the def-
initions of the coe�cients (2.4.4), (2.4.5), (2.4.8), (2.4.9), (2.4.2) and (2.4.13), it
su�ces to analyze the regularity of

kf;� (p;1) =
Z �

0
f � � X

1 � r s(p) ds ;

k0
f;� (p;1) =

Z �

0
Xf � � X

1 � r s(p) ds ;
Z 1

1
g(� )G�;n f (p; � ) d�

as functions ofp 2 M , with g(� ) being a function of the following forms:

e� �= 2; �e � �= 2; e� �= 2 cos

 
= �
2

�

!

; e� �= 2 sin

 
= �
2

�

!

; e� 1� �
2 � (0 < � < 1): (2.4.18)

We start with the following elementary lemma.

Lemma 2.4.2. Let � be a positive real number. Ifh : M ! C is of classC 1, then
the function

p 7!
Z �

0
h � r s(p) ds ; p 2 M

is of classC 1 on M .
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Proof. Fix a point p0 2 M , and let (@x i ) i =1 ;2;3 be a local frame of the tangent bundle
TM around p0. It su�ces to prove that, for each i = 1; 2; 3, the partial derivative

p 7! @x i jp

 Z �

0
h � r s ds

!

(2.4.19)

exists and is continuous in an open neighborhood ofp. Upon passing to local smooth
charts for M , the classical theorem of di�erentiation under the integral sign ensures
the validity of the formal passage

p 7! @x i jp

 Z �

0
h � r s ds

!

=
Z �

0
@x i jp(h � r s) ds ;

provided that there exists a positive real-valued function' on [0; � ], integrable with
respect to the Lebesgue measure, such thatj@x i jq(h � r s)j � ' (s) for any q in an
open neighborhood ofp. Notice that, by the dominated convergence theorem. this
would yield continuity of the partial derivative in (2.4.19) at the same time. The
chain rule for the di�erential gives d(h � r s)q = (d h)r s (q) � (dr s)q for any q 2 M
and s 2 [0; � ]. As follows readily from the explicit expression forr s in (2.1.3) and
direct computations, the operator norm28 of the linear operator(dr s)q is uniformly
bounded in q and s, as the entries of any Jacobian matrix associated to it only
involve �nite linear combinations of the sine and cosine functions. Therefore, there
exists a constantC > 0 such that

j@x i jq(h � r s)j � C khkC1

for any s 2 [0; � ] and any q in the domain of de�nition of the local frame(@x i ) i =1 ;2;3.
The conclusion is thus achieved by setting' to be constantly equal toC khkC1 .

As (� X
t )t2 R is a smooth �ow onM and f is of classC 2, the functionsf � � X

1 ; Xf � � X
1

are of classC 1. By virtue of Lemma 2.4.2, the functions

p 7!
Z �

0
f � � X

1 � r s(p) ds; p 7!
Z �

0
Xf � � X

1 � r s(p) ds

are of classC 1 on M .
Therefore, it remains to deal with

R1
1 g(� )G�;n f (p; � ) d� as a function ofp 2 M , g

being as in (2.4.18). Expanding out the expression from (2.3.7), we obtain that it
equals

Z 1

1
g(� )

 
n2e� �

� (1 � e� 2� )2

Z �

0
f � � X

� � r s(p)ds �
2e� �

� (1 � e� 2� )

Z �

0
Xf � � X

� � r s(p)ds

+
2ine� 2�

� (1 � e� 2� )2
(f � � X

� � r � (p) � f � � X
� (p))

+
2

� (1 � e� 2� )
(Uf � � X

� � r � (p) � Uf � � X
� (p))

!

d� :

We shall know treat the four summands separately.
28Formally, we would need to specify a Riemannian metric on the compact manifoldM . For the

purposes of the proof however, only boundedness of the relevant quantities matters, so that any
such metric would serve our goal (cf. Remark 2.1.11(1)).
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Lemma 2.4.3. If g takes one of the forms in(2.4.18), the functions

p 7!
Z 1

1

g(� )e� �

(1 � e� 2� )2

 Z �

0
f � � X

� � r s(p) ds

!

d� ; (2.4.20)

p 7!
Z 1

1

g(� )e� �

1 � e� 2�

 Z �

0
Xf � � X

� � r s(p) ds

!

d� ; (2.4.21)

p 7!
Z 1

1

g(� )e� �

(1 � e� 2� )2

 

f � � X
� � r � (p) � f � � X

� (p)

!

d� (2.4.22)

are of classC 1 on M .

Proof. The proof proceeds along the same lines as the proof of Lemma 2.4.2. The
crucial point is that, for any point q 2 M and any � � 1, the operator norm of
the di�erential (d� X

� )q doesn't exceed (up to a constant factor depending only on
the choice of a Riemannian metric on the tangent bundleTM ) the quantity e�= 2,
as direct computations allow to verify starting from the explicit expression of� X

�
in (2.1.4). As a consequence, there exists a constantC > 0 such that

�
�
�
�
�

g(� )e� �

(1 � e� 2� )2

 Z �

0
@x i jq(f � � X

� � r s) ds

! �
�
�
�
�
� C

jg(� )je� �

(1 � e� 2� )2

Z �

0
kf kC1 e

�
2 ds

= C kf kC1

jg(� )je� �
2

(1 � e� 2� )2

for every � � 1 and i = 1; 2; 3, where (@x i ) i =1 ;2;3 is a local frame ofTM around a
given �xed point p0 2 M . Since the function

jg(� )je� �= 2

(1 � e� 2� )2

is integrable on the half-line[1; 1 ), we deduce as in the proof of Lemma 2.4.2 that
the function in (2.4.20) is of classC 1 on M .
The same assertion for the remaining two functions in (2.4.21) and (2.4.22) follows
by a similar argument.

What is left to investigate, up to multiplicative constants, is thus the regularity of
the function

p 7!
Z 1

1

g(� )
1 � e� 2�

�
Uf � � X

� � r � (p) � Uf � � X
� (p)

�
d� (2.4.23)

on the manifold M . As we shall presently see, it depends on the functiong.

Lemma 2.4.4. If g(� ) = e� 1+ �
2 � , then the function in (2.4.23) is of classC 1 on M .

Proof. It su�ces to argue as in the proof of Lemma 2.4.3 observing that, when
0 < � < 1, the function

e� 1+ �
2 �

1 � e� 2�
e

�
2 =

e� �
2 �

1 � e� 2�

is integrable on the half-line[1; 1 ).
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It is straightforward to realize that the same argument does not carry over to the
other possible forms ofg(� ) listed in (2.4.18). For those remaining cases, we instead
establish Hölder-continuity of the function in (2.4.23) by a di�erent argument.
Fix a Riemannian metric g on the connected manifoldM , inducing a Riemannian
distance function d. The choice is immaterial for our purposes, as pointed out in
Remark 2.1.11(1). We start with the following well-known properties of the �ows
(� X

t )t2 R; (r s)s2 R.

Lemma 2.4.5. There exist real constantsCX;d ; C� ;d, depending only ond, such
that, for any pair of points p; q2 M , it holds

d(� X
t (p); � X

t (q)) � CX;d ejt jd(p; q) (2.4.24)

for every t 2 R and
d(r s(p); r s(q)) � C� ;d d(p; q) (2.4.25)

for every s 2 R.

Proof. By compactness ofM , we have the freedom to prove the lemma for a judicious
choice ofd. To pro�t most from the algebraic description of the �ows (� t )t2 R and
(r s)s2 R, we �x a left-invariant Riemannian metric gSL2 (R) on the Lie groupSL2(R)
and let d be the Riemannian distance function onM determined by the unique
Riemannian metric g for which the projection map(SL2(R); gSL2 (R)) ! (M; g) is a
Riemannian submersion (cf. [117, Cor. 2.29]) or, equivalently for a covering map, a
local isometry. AsM is compact, we can choose a �nite open cover~U = ( ~Ui ) i 2 I of
M and a collectionU = ( Ui ) i 2 I of open subsets ofSL2(R) such that, for any i 2 I ,
the restriction of the projection to Ui is an isometry fromUi onto ~Ui .
The distancedSL2 (R) induced bygSL2 (R) is locally equivalent to the distance induced
by the operator normk�kop on the vector space of2� 2 real matrices corresponding
to the Euclidean norm onR2 (cf. [53, Lem. 9.12]): for everyg 2 SL2(R), there exists
an open neighborhoodWg of g and a constantCd;g such that

C � 1
d;g kx � ykop � dSL2 (R)(x; y) � Cd;g kx � ykop

for any x; y 2 Wg. Upon restricting the Ui 's (and the ~Ui 's) if necessary, we may
assume that each~Ui is contained inWgi for somegi 2 SL2(R). De�ne Cd to be the
supremum of theCd;gi ; i 2 I . We also select a second �nite open coverV = ( Vj ) j 2 J

in such a way that the closure of eachVj is compact and contained in someUi ( j ) .
Observe that, for everyj 2 J , the function � j : Vj ! (0; 1 ] de�ned as the �rst exit
time

� j (p) = inf f t > 0 : � X
t (p) =2 Ui ( j )g ; p 2 Vj

is continuous, and as such attains a strictly positive minimal valuet j . Set
t0 = inf j 2 J t j and let � V be a Lebesgue number for the coveringV ([150, Lem. 27.5]).
Consider now two pointsp; q2 M , and suppose �rst that d(p; q) � � V ; then

d(� X
t (p); � X

t (q)) � diamd(M ) � � � 1
V diamd(M )d(p; q) � � � 1

V diamd(M )ejt jd(p; q)
(2.4.26)
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for every t 2 R, where diamd(M ) = supp0;q02 M d(p; q) is the diameter of M with
respect tod.
Now assume thatd(p; q) < � V , so that p and q both lie in someVj . Choose repre-
sentativesx and y of p and q, respectively, inside~Ui ( j ) ; then, for every 0 � t < t 0,
we have

d(� X
t (p); � X

t (q)) � dSL2 (R)(x exptX; y exptX ) � Cd kx exptX � y exptX kop

� Cd kx � ykop kexptX kop � C2
d dSL2 (R)(x; y)ejt j=2

� C2
detdSL2 (R)(x; y) = C2

detd(p; q) ;
(2.4.27)

where we used the fact thatp; q; � X
t (p); � X

t (q) all belong toU(j )
i . If now t0 � t < 2t0,

then we distinguishes two cases.

ˆ If d(� X
t0

(p); � X
t0

(q)) � � V , then (2.4.26) applies giving

d(� X
t (p); � X

t (q)) � � � 1
V diamd(M )et � t0 d(� X

t0
(p); � X

t0
(q))

� C2
d � � 1

V diamd(M )etd(p; q) :

This estimate is actually valid for anyt � t0.

ˆ If d(� X
t0

(p); � X
t0

(q)) < � V , then the computations in (2.4.27) are valid for the
given t and yield

d(� X
t (p); � X

t (q)) � C2
detd(p; q) :

Subdividing the half-line R� 0 into the intervals [kt0; (k + 1) t0); k 2 N, and arguing
as above on each of them, we conclude that

d(� X
t (p); � X

t (q)) � supf C2
d ; C2

d � � 1
V diamd(M )getd(p; q)

for any t > 0.
The same analysis can be performed, with the appropriate modi�cations, for times
t < 0. This shows (2.4.24).
The inequality in (2.4.25) is taken care of in an entirely analogous fashion, observing
that kexp(s�) kop = 1 for every s 2 R.

Let us now �x two points p; q2 M . As in the previous proof, we denote by diamd(M )
the diameter ofM with respect to the distanced; with

Lipd(Uf ) = sup
p0;q02 M; p 06= q0

jUf (p0) � Uf (q0)j
d(p; q)

we indicate the Lipschitz constant of the functionUf with respect to d.
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We may then estimate
�
�
�
�
�

Z 1

1

g(� )
1 � e� 2�

�
Uf � � X

� � r � (p) � Uf � � X
� (p)

�
d�

�
Z 1

1

g(� )
1 � e� 2�

�
Uf � � X

� � r � (q) � Uf � � X
� (q)

�
d�

�
�
�
�
�

�
Z 1

1

jg(� )j
1 � e� 2�

�
jUf � � X

� � r � (p) � Uf � � X
� � r � (q)j

+ jUf � � X
� (p) � Uf � � X

� (q)j
�
d�

� (1 � e� 2)� 1Lip(Uf )
Z 1

1
jg(� )j

�
minf diamd(M ); CX;d e� d(r � (p); r � (q)g

+ inf f diamd(M ); CX;d e� d(p; q)g
�
d�

� 2(1 � e� 2)� 1Lip(Uf )
Z 1

1
jg(� )j inf f diamd(M ); Cd(p; q)e� gd� ;

(2.4.28)

whereC = CX;d supf 1; C� ;dg.

The following elementary estimates allow to �nalize the argument.

Lemma 2.4.6. Let r; K 2 R> 0; a 2 (0; 1). Then

Z 1

1
e� a� inf f K; re � gd� �

1
a(1 � a)K a� 1

r a : (2.4.29)

Furthermore,
Z 1

1
�e � �

2 inf f K; re � gd� = 4
p

Kr
1
2 (log k + log r � 1) : (2.4.30)

Proof. It su�ces to split the integral as

Z 1

1
e� a� inf f K; re � gd� =

Z log K
r

1
e� a� � re� d� +

Z 1

log K
r

e� a� � K d�

=
r

1 � a

  
r
K

! a� 1

� e1� a

!

+
K
a

 
r
K

! a

�
r a

(1 � a)K a� 1
+

r a

aK a� 1
=

1
a(1 � a)K a� 1

r a ;

which delivers the inequality (2.4.29). Analogous computations allow to estab-
lish (2.4.30).

Combining Lemmata 2.4.3, 2.4.4, 2.4.6 together with the estimate in (2.4.28) and the
explicit expressions for the coe�cientsD �

�;�;n f in (2.4.8), (2.4.9), (2.4.2), (2.4.13),
we deduce the following:

ˆ when � > 1=4, D �
�:�;n f are Hölder continuous with Hölder exponent1=2;
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ˆ when � = 1=4, D +
�; 1=4;n f and D �

�; 1=4;n are Hölder continuous, the latter with
Hölder exponent1=2, while the former with Hölder exponent1=2� " for every
" > 0;

ˆ when 0 < � < 1=4, D +
�;�;n f is Hölder continuous with Hölder exponent1� �

2 ,
while D �

�;�;n f is of classC 1 on M .

The proof of Theorem 2.1.6 is concluded.

2.5 Asymptotics for arbitrary functions

The bulk of this section is devoted to the deduction of Theorem 2.1.8, which ad-
dresses the equidistribution rate of su�ciently regular observables onM not subject
to any eigenfunction condition, from the special case of joint eigenfunctions of�
and � phrased in Theorem 2.1.6. The argument is crucially based upon the or-
thogonal decompositions of Sobolev spaces into joint eigenspaces of� and � , which
is recalled in detail in Section 2.2.2. We then proceed by proving Theorem 2.1.21,
concerning the asymptotic behaviour of arbitrary translates of compact orbits in-
sideM ; in light of the classical Cartan decomposition of the Lie groupSL2(R), the
result follows from Theorem 2.1.8 in a fairly straightforward manner. Along the
way, we shall also clarify the steps needed to derive, from those two main results,
Corollaries 2.1.9 and 2.1.14.

2.5.1 Sum estimates on Sobolev norms of eigenfunctions

Before embarking on the proof of Theorem 2.1.8, we collect in this subsection a
few estimates relating sums of norms of Sobolev eigenfunctions with a higher-order
Sobolev norm of their sum, which will prove to be instrumental in the sequel. The
need for those estimates stems from the fact that the Hilbert-sum decompositions in
Section 2.2.2 only provide, by Bessel's inequality ([180, 2, XXIII, 6; 14]), estimates
on the sum of squares of the components' norms, while our approach necessitates
`1-bounds (see Section 2.5.2).

Notation is as in Section 2.2.2.

Lemma 2.5.1. Let k be a natural number.

1. The in�nite series
X

� 2 Spec(� )

X

n2 I (� )

1

(1 + � + n2

2 )k
(2.5.1)

is summable if and only ifk � 2.

2. The in�nite series
X

� 2 Spec(� )

X

n2 I (� )

(n2 + 1) 2

(1 + � + n2

2 )k
(2.5.2)

is summable if and only ifk � 3.
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Remark 2.5.2. Observe that the series in (2.5.1) and (2.5.2) consist of nonnegative
real numbers: see Lemma 2.2.3.

Proof of Lemma 2.5.1. It is convenient to examine separately the convergence prop-
erties of

X

� 2 Spec(� )\ R� 0

X

n2 I (� )

1

(1 + � + n2

2 )k
(2.5.3)

and of
X

� 2 Spec(� )\ R< 0

X

n2 I (� )

1

(1 + � + n2

2 )k
: (2.5.4)

We know (see Section 2.2.2) that negative eigenvalues of the Casimir operator are
of the form � m = � m(m + 2) =4 for m ranging over the setN� of positive natural
numbers; therefore

X

� 2 Spec(� )\ R< 0

X

n2 I (� )

1

(1 + � + n2

2 )k
=

X

m2 N�

X

n2 I (� m )

1

(1 � m(m+2)
4 + n2

2 )k
; (2.5.5)

which has the same convergence properties of the series

X

(m;n )2 Z2

1
(1 + m2 + n2)k

:

By comparison with the integral
Z

R2

1
(1 + x2 + y2)k

dxdy ;

which is convergent if and only ifk � 2, as is well-known, we infer that:

1. the series in (2.5.1) cannot converge ifk = 1;

2. the series in (2.5.5) converges for anyk � 2.

As to the �rst summation in (2.5.3), we may now supposek � 2 and appeal to the
Weyl law for the positive eigenvalues of the Casimir operator (see Theorem 2.2.1),
which we list in increasing order as� (p)

0 = 0 < � (p)
1 < � � � < � (p)

m < � � � , hence without
multiplicity. Recall that area (S) is the volume of the surfaceS = � nH with respect
to the hyperbolic area measure. Choose a real numberc > area(S)=4� ; then, there
exists R0 2 R> 0 such that � (p)

m > m=c for any integer m > cR 0. On the one hand,
the quantity

X

0� m� cR0

X

n2 I (� ( p)
m )

1

(1 + � (p)
m + n2

2 )k

is a �nite sum of converging series. On the other hand,

X

m>cR 0

X

n2 I (� ( p)
m )

1

(1 + � (p)
m + n2

2 )k
<

X

m>cR 0

X

n2 I (� ( p)
m )

1

(1 + m
c + n2

2 )k

�
X

m>cR 0

1
(1 + m

c )k
+

X

m>cR 0

X

n2 I (� ( p)
m )nf 0g

1

(1 + m
c + n2

2 )k
:
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Plainly, the �rst summand in the last expression converges wheneverk � 2, and so
does the second by comparison with the integral

Z 1

cR0

Z 1

0

1
�
1 + x

c + y2

2

� k dy dx =
Z 1

cR0

1
�
1 + x

c

� k

Z 1

0

p
2

�
1 + x

c

� 1=2

(1 + u2)k
du dx

=

 Z 1

cR0

p
2

�
1 + x

c

� k� 1=2 dx

! Z 1

0

1
(1 + u2)k

du

!

< 1 :

As far as the series in (2.5.2) is concerned, its summability properties follows readily
by running the argument above with the appropriate modi�cations.

Leveraging the estimates in Lemma 2.5.1, we are now in a position to prove the
following.

Proposition 2.5.3. Let k � 2 be an integer. There exists a constantCSpec;k > 0,
depending only onk and on the spectrum of the Laplace-Beltrami operator on the
hyperbolic surfaceS, such that the following holds. Lets be a positive real number,
f a function in the Sobolev spaceW s+ k(H ); for any � 2 Spec(� ) and n 2 I (� ), let
f �;n be the orthogonal projection off , with respect to the inner product inW s+ k(H ),
onto the closed subspaceW s+ k(H �;n ). Then

X

� 2 Spec(� )

X

n2 I (� )

kf �;n kW s � CSpec;k kf kW s+ k : (2.5.6)

Proof. Recall from Lemma 2.2.3 that, for any� 2 Spec(� ) and n 2 I (� ),

kf �;n k2
W s =

 

1 + � +
n2

2

! � k

kf �;n k2
W s+ k :

Using the Cauchy-Schwartz inequality, we get

X

� 2 Spec(� )

X

n2 I (� )

kf �;n kW s =
X

� 2 Spec(� )

X

n2 I (� )

 

1 + � +
n2

2

! � k=2

kf �;n kW s+ k

�

 
X

� 2 Spec(� )

X

n2 I (� )

1
�
1 + � + n2

2

� k

! 1=2 
X

� 2 Spec(� )

X

n2 I (� )

kf �;n k2
W s+ k

! 1=2

:

The inequality in (2.5.6) is thus a consequence of Parseval's identity
([180, 2, XXIII, 6; 17])

kf k2
W s+ k =

X

� 2 Spec(� )

X

n2 I (� )

kf �;n k2
W s+ k ;

where we de�ne the constantCSpec;k as

CSpec;k =

 
X

� 2 Spec(� )

X

n2 I (� )

1
�
1 + � + n2

2

� k

! 1=2

;

which is �nite by Lemma 2.5.1 and satis�es the dependence properties claimed in
the statement (cf. Sections 2.2.2, 2.2.3).
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2.5.2 Equidistribution of expanding translates of circle arcs

We are now ready to prove Theorem 2.1.8. Let� be a real parameter in the inter-
val (0; 4� ], s a real number satisfyings > 11=2, f a function in the Sobolev space
W s(M ). Keeping with the notation introduced in the foregoing subsection, we de-
note by f �;n 2 W s(H �;n ) the orthogonal projection of f onto the closed subspace
W s(H �;n ), for any Casimir eigenvalue� and any n 2 I (� ). In what follows, the
equivalence classesf and f �;n are identi�ed with their unique 29 continuous repre-
sentatives. The asymptotic expansion in (2.1.17) will result from the sum of the
contributions of each componentf �;n , which are provided by Theorem 2.1.6. We
now expose the details.

Choose a real parameters0 satisfying 3=2 < s 0 � s � 2; the Sobolev Embedding
Theorem (Theorem 2.2.4) gives the boundkf �;n k1 � C0;s0 kf �;n kW s0 for any � and
n as before, for some constantC0;s0 > 0 depending only ons0 and on the manifold
M . For any point q 2 M , we estimate

X

� 2 Spec(� )

X

n2 I (� )

jf �;n (q)j �
X

n2 Spec(� )

X

n2 I (� )

kf �;n k1 � C0;s0

X

� 2 Spec(� )

X

n2 I (� )

kf �;n kW s0

� C0;s0CSpec;2 kf kW s0+2 ;
(2.5.7)

the last inequality being given by Proposition 2.5.3. Select now a base pointp 2 M ,
which will remain �xed until the end of this subsection. By virtue of (2.5.7), the
dominated convegence theorem for in�nite series yields

1
�

Z �

0
f � � X

t � r s(p) ds =
X

� 2 Spec(� )

X

n2 I (� )

1
�

Z �

0
f �;n � � X

t � r s(p) ds : (2.5.8)

Observe that, sinces > 11=2, the componentsf �;n are of classC 2 by the Sobolev
Embedding Theorem (Theorem 2.2.4); to each summand on the right-hand side
of (2.5.8), we may thus apply Theorem 2.1.6, which delivers on a formal level the

29Recall that uniqueness is a result of the fact that the uniform measurevol on M is fully
supported.
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equality30

1
�

Z �

0
f � � X

t � r s(p) ds =
Z

M
f d vol

+
X

� 2 Spec(� ); � � 1=4

e� t
2

 

cos

 
= �
2

t

! 
X

n2 I (� )

D +
�;�;n f �;n (p)

!

+ sin

 
= �
2

t

! 
X

n2 I (� )

D �
�;�;n f �;n (p)

!!

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 t

 
X

n2 I (� )

D +
�;�;n f �;n (p)

!

+ e� 1� �
2 t

 
X

n2 I (� )

D �
�;�;n f �;n (p)

!

+ "0

 

e� t
2

 
X

n2 I (1=4)

D +
�; 1=4;n f 1=4;n (p)

!

+ te� t
2

 
X

n2 I (1=4)

D �
�; 1=4;n f 1=4;n (p)

!!

+ R �; posf (p; t) + e� tM �; 0f (p; t) +
X

n2 I (0)

R �; 0;n f 0;n (p; t) + R �; df (p; t)

(2.5.9)

for every t � 1, where "0 is de�ned in (2.1.15), G�;n f 0;n is as in (2.3.7) and the
quantities

R �; posf (p; t); M �; 0f (p; t); R �; df (p; t) ; p 2 M; t � 1

are de�ned as follows:

R �; posf (p; t) =
X

� 2 Spec(� )\ R> 0

X

n2 I (� )

R �;�;n f (p; t) ; (2.5.10)

M �; 0f (p; t) =
X

n2 I (0)

Z t

1
� G�;n f 0;n (p; � ) d� ; (2.5.11)

R �; df (p; t) =
X

� 2 Spec(� )\ R< 0

X

n2 I (� )

1
�

Z �

0
f �;n � � X

t � r s(p) ds : (2.5.12)

The equality in (2.1.17) would follow directly from (2.5.9) by de�ning

D �
�;� f (p) =

X

n2 I (� )

D �
�;�;n f �;n (p) ; p 2 M; � 2 Spec(� ) \ R> 0 (2.5.13)

and

R � f (p; t) = R �; posf (p; t) + e� tM �; 0f (p; t) +
X

n2 I (0)

R �; 0;n f 0;n (p; t) + R �; df (p; t) :

(2.5.14)

30Notice that
R

M f �;n d vol = 0 for every Casimir eigenvalue� 6= 0 and every n 2 I (� ), as
f �;n is orthogonal to the joint eigenspaceH0;0 which contains the constant functions. For the
same reason,

R
M f 0;n d vol = 0 for every n 2 I (0) n f 0g. Therefore, dominated convergence givesR

M f 0;0 d vol =
R

M f d vol.
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Ii is left to show that all the in�nite sums we are considering with a formal meaning
are actually convergent.
Let us begin by examining the sums in (2.5.13). Fix� 2 Spec(� ) \ R> 0; for any
p 2 M and n 2 I (� ), we have from Theorem 2.1.6 that

jD �
�;�;n f �;n (p)j �



 D �

�;�;n f �;n





1
�

� (� )
�

(n2 + 1) kf �;n kC1 :

Choose a real parameters00so that 5=2 < s 00� s � 3; then the Sobolev Embedding
Theorem (Theorem 2.2.4) allows to deduce



 D �

�;�;n f �;n





1
� C1;s00

� (� )
�

(n2 + 1) kf �;n kW s00 : (2.5.15)

Now, in view of Lemma 2.2.3 and applying Cauchy-Schwartz's inequality and Par-
seval's identity ([180, 2, XXIII, 6; 17]), we get

X

n2 I (� )

(n2 + 1) kf �;n kW s00 =
X

n2 I (� )

n2 + 1
�
1 + � + n2

2 )3=2
kf �;n kW s00+3

�

 
X

n2 I (� )

(n2 + 1) 2

�
1 + � + n2

2

� 3

! 1=2 
X

n2 I (� )

kf �;n k2
W s00+3

! 1=2

=

 
X

n2 I (� )

(n2 + 1) 2

�
1 + � + n2

2

� 3

! 1=2

kf � kW s00+3 ;

(2.5.16)

wheref � is the orthogonal projection off onto the closed subspaceW s(H � ) and the
in�nite sum in the last expression converges (see Lemma 2.5.1).
Setting

C� =

 
X

n2 I (� )

(n2 + 1) 2

�
1 + � + n2

2

� 3

! 1=2

; (2.5.17)

our argument thus leads, combining (2.5.15) and (2.5.16), to the estimate

X

n2 I (� )



 D �

�;�;n f �;n





1
� C1;s00C�

� (� )
�

kf � kW s00+3 ; (2.5.18)

which implies that the sums
P

n2 I (� ) D �
�;�;n f �;n converge normally in the Banach

spaceC 0(M ), hence absolutely and uniformly for allp 2 M . In particular, the
functions D �

�;� f are well-de�ned, continuous onM and ful�ll the upper bound



 D �

�;� f




1
� C1;s� 3C�

� (� )
�

kf � kW s ; (2.5.19)

obtained by picking s00= s � 3 in (2.5.18).
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We now consider sums over all positive Casimir eigenvalues. We have

X

� 2 Spec(� ); �> 1=4

jD �
�;� f (p)j �

X

� 2 Spec(� ); �> 1=4



 D �

�;� f




1

�
C1;s� 3

�

X

� 2 Spec(� ); �> 1=4

C� � (� ) kf � kW s :

Observe that � (� ) (whose value is speci�ed after (2.4.11)) is uniformly bounded by
a constant CSpec;pos depending only on the in�mum of the set Spec(� ) \ (1=4; 1 );
recalling the de�nition of C� in (2.5.17), we apply once again Cauchy-Schwartz's
inequality and Parseval's identity to infer

X

� 2 Spec(� ); �> 1=4



 D �

�;� f




1
�

� CSpec;posC1;s� 3 kf kW s

 
X

� 2 Spec(� ); �> 1=4

X

n2 I (� )

(n2 + 1) 2

�
1 + � + n2

2

� 3

! 1=2

;

(2.5.20)

where the term between parentheses on the right-hand side is �nite because of
Lemma 2.5.1.

Since the spectrum of the Casimir operator is discrete (see Section 2.2.2), there are
only �nitely many distinct eigenvalues in the interval (0; 1=4), so that the series

X

� 2 Spec(� ); �> 1=4



 D �

�;� f




1

involves only �nitely many additional terms with respect to (2.5.20); each of those
terms can be bounded with the help of (2.5.19). The claimed bound in (2.1.16)
follows, by de�ning the constantC0

Spec appropriately in terms of CSpec;pos and of the
C� for 0 < � < 1=4.

In order to �nalize the proof of Theorem 2.1.8, we address now the remainder terms
de�ned in (2.5.10), (2.5.11), (2.5.12) and (2.5.14).

We start with the term in (2.5.10) stemming from positive Casimir eigenvalues.
De�ne � princ to be the in�mum of Spec(� ) \ (1=4; 1 ), and let � princ be the corre-
sponding parameter iniR> 0 ful�lling 1 � � 2

princ = 4� princ . Using the bounds for the
remainder termsR �;�;n f �;n corresponding to the single componentsf �;n , provided
by Theorem 2.1.6, we estimate
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X

� 2 Spec(� ); �> 1=4

X

n2 I (� )

jR �;�;n f �;n (p; t)j

�
X

� 2 Spec(� ); �> 1=4

8� 0

� = �
e� t

X

n2 I (� )

(n2 + 1) kf �;n kC1

�
8� 0C1;s� 3

�
e� t

X

� 2 Spec(� ); �> 1=4

1
= �

X

n2 I (� )

(n2 + 1) kf �;n kW s� 3

�
8� 0C1;s� 3

� = � princ
e� t

X

� 2 Spec(� ); �> 1=4

 
X

n2 I (� )

(n2 + 1) 2

�
1 + � + n2

2

� 3

! 1=2 
X

n2 I (� )

kf �;n k2
W s

! 1=2

�
8� 0C1;s� 3

� = � princ
e� t

 
X

� 2 Spec(� ); �> 1=4

X

n2 I (� )

(n2 + 1) 2

�
1 + � + n2

2

� 3

! 1=2 
X

� 2 Spec(� ); �> 1=4

X

n2 I (� )

kf �;n k2
W s

! 1=2

�
8� 0C1;s� 3CSpec;3

�
1

= � princ
kf kW s e� t

(2.5.21)

for any t � 1, applying in successive order the bound in (2.1.8), Theorem 2.2.4, the
Cauchy-Schwartz's inequality (twice) and Bessel's inequality ([180, 2, XXIII, 6; 14])
to the Hilbert space W s(M ). Similarly, the bounds in (2.1.9) and (2.1.11) yield,
respectively,

X

n2 I (1=4)

jR �; 1=4;n f 1=4;n (p; t)j �
4� 0C1;s� 3CSpec;3

�
kf kW s (t + 1) e� t

and

X

� 2 Spec(� ); 0<�< 1=4

X

n2 I (� )

jR �;�;n f �;n (p; t)j �
4� 0C1;s� 3CSpec;3Ccomp

�
kf kW s e� t

for any t � 1, where we set

Ccomp =
X

� 2 Spec(� ); 0<�< 1=4

1
� (1 � � )(1 + � )

:

De�ning thus

Cpos =
2

= � princ
+ Ccomp + 1 (2.5.22)

and applying the triangular inequality for in�nite sums, we get from (2.5.10) that

jR �; posf (p; t)j �
4� 0C1;s� 3CSpec;3Cpos

�
kf kW s (t + 1) e� t ; t � 1: (2.5.23)
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An entirely analogous argument, using the bound in (2.1.13), shows that
�
�
�
�
�

X

n2 I (0)

R �; 0;n f 0;n (p; t)

�
�
�
�
�
�

(8e� + � 0)C1;s� 3CSpec;3

�
kf kW s e� t ; t � 1: (2.5.24)

De�ne now

Cdisc =

 

inf
� 2 Spec(� ); �< 0

j� j

! � 1

+
2e�
� 0

sup
� 2 Spec(� ); �< 0

3 + �
�

:

Then, the bound in (2.1.14) leads to

X

� 2 Spec(� ); �< 0

X

n2 I (� )

1
�

�
�
�
�
�

Z �

0
f �;n � � X

t � r s(p) ds

�
�
�
�
�

�
X

� 2 Spec(� ); �< 0

C1;s� 3

�

 
4� 0

(� � 1)(� + 1)
+

2e� (3 + � )
�

!

e� t
X

n2 I (� )

(n2 + 1) kf �;n kW s� 3

�
� 0C1;s� 3CSpec;3Cdisc

�
kf kW s e� t

for any t � 1, arguing as in (2.5.21). It follows at once from (2.5.12) that

jR �; df (p; t)j �
� 0C1;s� 3CSpec;3Cdisc

�
kf kW s e� t (2.5.25)

for any t � 1. We �nally come to the estimation of the term M �; 0f (p; t), de�ned
in (2.5.11). The inequality (2.3.8) gives

X

n2 I (0)

�
�
�
�
�

Z t

1
� G�;n f 0;n (p; � ) d�

�
�
�
�
�
�

� 0

�

X

n2 I (0)

(n2 + 1)
Z t

1
kf 0;nkC1 d�

=
� 0

�
(t � 1)

 
X

n2 I (0)

(n2 + 1) kf 0;nkC1

!

�
� 0C1;s� 3

�
(t � 1)

 
X

n2 I (0)

(n2 + 1) kf 0;nkW s

!

;

so that
jM �; 0f (p; t)j �

� 0C1;s� 3CSpec;3

�
kf kW s (t � 1) (2.5.26)

for any t � 1. Recalling (2.5.14) and combining the estimates in (2.5.23), (2.5.24),
(2.5.25) and (2.5.26) we conclude that

jR � f (p; t)j � jR �; posf (p; t)j + e� t jM �; 0f (p; t)j +
X

n2 I (0)

jR 0;�;n f 0;n (p; t)j + jR �; df (p; t)j

�
C1;s� 3CSpec

�
kf kW s (t + 1) e� t ;

for any t � 1, where we set

CSpec = CSpec;3

�
8e� + � 0(2 + Cpos + Cdisc)

�
;

which ostensibly depends only on the spectrum of the Casimir operator.
The proof of Theorem 2.1.8 is complete.
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2.5.3 E�ective equidistribution and shrinking circle arcs

In this subsection we brie�y comment on the proof of Corollaries 2.1.9 and 2.1.14.
Recall that � � indicates the spectral gap of the surface� nH, de�ned in (2.1.19).
As to Corollary 2.1.9, which concerns the optimal e�ective equidistribution state-
ment that can be drawn from the asymptotic expansion in Theorem 2.1.8, it su�ces
to de�ne the function D main

� f : M � R� 0 ! C as follows:

ˆ D main
� f = D �

�;� �
f if � � � 1=4;

ˆ D main
� f = D +

�;� �
f + D �

�;� �
f if � � > 1=4.

The error-term estimate in (2.1.21) then follows directly from the asymptotics in
(2.1.17).
Now suppose that we let the boundaries of the parametrization of the circle arcs
depend on the time parametert, so as to deal with a collection of time-varying
subarcs

 t = f � X
t � r s(p) : � 1(t) � s � � 2(t)g

as in the statement of Corollary 2.1.14. If, as in the assumptions to the latter, we
suppose that, for a given function� : R> 0 ! R> 0 satisfying � (t) ! 1 ast ! 1 , we
have

� 2(t) � � 1(t) � � (t)e� 1�< � �
2 t

for every su�ciently large t, � � corresponding to the spectral gap� � , then we obtain
1

� 2(t) � � 1(t)

Z � 2 (t )

� 1 (t )
f � � X

t � r s(p) ds =

=
1

� 2(t) � � 1(t)

Z � 2 (t )� � 1 (t )

0
f � � X

t � r s+ � 1 (t )(p) ds

=
Z

M
f d vol + D main

� 2 (t )� � 1 (t ) f
�
r � 1 (t )(p)

�
t " 0 e� 1�< � �

2 t + o(e� 1�< � �
2 t ) :

(2.5.27)

The bound (2.1.20) results into

jD main
� 2 (t )� � 1 (t ) f

�
r � 1 (t )(p)

�
j � C1;s� 3C0

Speckf kW s

 
1

� 2(t) � � 1(t)

!

� C1;s� 3C0
Speckf kW s � (t)� 1e

1�< � �
2 t

for any t � t0. We deduce that the right-hand side of (2.5.27) is equal to
Z

M
f d vol + o(t)

as t tends to in�nity. An elementary application of the Stone-Weierstrass' theorem
([65, Thm. 4.51]) gives that smooth functions are dense in the space of continuous
functions on the compact manifoldM ; it follows that the convergence

1
� 2(t) � � 1(t)

Z � 2 (t )

� 1 (t )
f � � X

t � r s(p) ds t !1�!
Z

M
f d vol

can be upgraded to hold for everyf 2 C 0(M ), whereby the desired equidistribution
follows.
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2.5.4 Equidistribution of circle arcs on the underlying sur-
face

This short subsection is occupied by a few comments concerning the statement of
Theorem 2.1.12, which is nothing but a specialization of Theorem 2.1.8 to the case
of observables de�ned on the underlying surfaceS = � nH, except for the lower
regularity assumed on the test functionf . First, we remark that SO2(R)-invariance
of the coe�cients D �

4�;� f and of the remainder termR 4� f follows at once from
their de�nition (see (2.5.13) and (2.5.14)) and the fact thatf is assumed to be
SO2(R)-invariant. We are only left to show that we might takes > 9=2, less restric-
tively in comparison to an arbitrary f de�ned on M . The relevant observation here
is that, for any SO2(R)-invariant function f 2 L2(M ), the componentsf � appearing
in the decomposition31

f =
X

� 2 Spec(� S )

f � ; f � 2 H �

inherit SO2(R)-invariance, that is, they satisfy � f � = 0. The estimate in (2.5.20)
thus only requiress > 9=2 = 11=2 � 1, as the sum

X

� 2 Spec(� S )

1
(1 + � )k

converges already fork = 2, and not only for k = 3 as is the case in (2.5.20).

2.5.5 Equidistribution of arbitrary translates

In light of the asymptotic expansion of averages along expanding circles given in
Theorem 2.1.8, the generalization to the behaviour of arbitrarySL2(R)-translates
stated in Theorem 2.1.21 is a rather straightforward consequence of the classical
Cartan decomposition for the semisimple Lie groupSL2(R), for which the reader is
referred to [107, Chap. VI]. We present the details of the argument in this subsection.
Let A = f exptX : t 2 Rg be the subgroup ofSL2(R) consisting of diagonal matrices
with positive entries (recall that X is de�ned as in (2.1.4)). The product map

SO2(R) � A � SO2(R) ! SL2(R); (k1; a; k2) 7! k1ak2

is surjective. For anyg 2 SL2(R), choose a decompositiong = k1(g)a(g)k2(g), where
a(g) is the diagonal matrix having as entries the singular values of the matrixg,
in decreasing order. In particular, ift(g) 2 R� 0 is (uniquely) determined by the
condition

a(g) =

 
et (g)=2 0

0 e� t (g)=2

!

; (2.5.28)

then t(g) and the operator normkgkop of g associated to the Euclidean norm onR2

are related by
kgkop = et (g)=2 ; t(g) = 2 log kgkop : (2.5.29)

31Recall from Section 2.2.2 that the Casimir operator� acts as the Laplace-Beltrami operator
� S on SO2(R)-invariant functions.
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Fix now a real numbers > 11=2 and a function f in the Sobolev spaceW s(M ).
Recall that, for any p 2 M , we indicate with mSO2 (R)�p the uniqueSO2(R)-invariant
measure supported on the compact orbitSO2(R) � p; furthermore, g� SO2(R) denotes
the push-forward of the latter measure under the right translation map
Rg(� g0) = � g0g on M . For any p 2 M and g 2 SL2(R), we resort to the Car-
tan decomposition ofg and write

Z

M
f dg� mSO2 (R)�p =

Z

M
f � Rg dmSO2 (R)�p =

Z

M
f � Rk2 (g) � Ra(g) � Rk1 (g) dmSO2 (R)�p

=
Z

M
f � Rk2 (g) � Ra(g) dmSO2 (R)�p =

1
4�

Z 4�

0

�
f � Rk2 (g)

�
� � X

t(g) � r s(p) ds ;

(2.5.30)

using the Rk1 (g)-invariance of mSO2 (R)�p and the fact that Ra(g) = � X
t(g) in view

of (2.5.28).
We may now make use of the asymptotic expansion provided by Theorem 2.1.8 for
the function f � Rk2 (g) , which lies in the same Sobolev spaceW s(M ) of f sinceRk2 (g)

is a smooth di�eomorphism ofM . We thereby obtain, for a �xed base pointp 2 M ,

1
4�

Z 4�

0

�
f � Rk2 (g)

�
� � X

t(g) � r s(p) ds =
Z

M
f � Rk2 (g) d vol

+ e� t ( g)
2

 
X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

t(g)

!

D +
4�;� (f � Rk2 (g))(p)

+ sin

 
= �
2

t(g)

!

D �
4�;� (f � Rk2 (g))(p)

!

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 t (g)D +

4�;� (f � Rk2 (g))(p) + e� 1� �
2 t (g)D �

4�;� (f � Rk2 (g))(p)

+ "0

�
e� t ( g)

2 D +
4�; 1=4(f � Rk2 (g))(p) + t(g)e� t ( g)

2 D �
4�: 1=4(f � Rk2 (g))( p)

�

+ R 4� (f � Rk2 (g))(p; t(g))
(2.5.31)

for any g 2 SL2(R) with kgkop �
p

e. De�ne now, for any Casimir eigenvalue
� 2 R> 0, the functions D �

� : M � SL2(R) ! C by

D �
� f (p; g) = D �

4�;� (f � Rk2 (g))(p) ; p 2 M; g 2 SL2(R); (2.5.32)

and set also

Rf (p; g) = R 4� (f � Rk2 (g))( p; t(g)) ; p 2 M; g 2 SL2(R):

Then, combining (2.5.30) with (2.5.31) and recalling (2.5.29) together with the fact
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that
R

M f � Rk2 d vol =
R

M f d vol, we deduce

Z

M
f dg� mSO2 (R)�p =

Z

M
f d vol

+
X

� 2 Spec(� ); �> 1=4

kgk� 1
op

�
cos (= � logkgkop)D +

� f (p; g)

+ sin ( = � logkgkop)D �
� f (p; g)

�

+
X

� 2 Spec(� ); 0<�< 1=4

kgk� (1+ � )
op D +

� f (p; g) + kgk� (1� � )
op D �

� f (p; g)

+ "0

�
kgk� 1

op D +
1=4f (p; g) + 2 kgk� 1

op logkgkopD �
1=4f (p; g)

�
+ Rf (p; g)

for any g 2 SL2(R) with kgkop �
p

e, which is precisely the asymptotic expansion
appearing in the statement of Theorem 2.1.21.
As stated in Theorem 2.1.8, the functionsD �

4�;� (f � Rk2 (g)) are continuous onM for
any �xed � 2 Spec(� ) \ R> 0 and g 2 SL2(R); equivalently, by (2.5.32),D �

� f (�; g) is
continuous onM for any �xed g 2 SL2(R).
Furthermore,we have that, for anyp 2 M; g 2 SL2(R) and � 2 Spec(� ) \ R> 0,

jD �
� f (p; g)j = jD �

4�;� (f � Rk2 (g))(p)j �


 D �

4�;� (f � Rk2 (g))




1

�
C1;s� 3C� � (� )

4�



 f � Rk2 (g)





W s
;

where the last inequality is given by (2.1.16). It remains to observe that compactness
of SO2(R) implies that there exists a constantCs;rot > 0 such that

kf � RkkW s � Cs;rot kf kW s

for any k 2 SO2(R). The proof of this assertion runs along the same lines of the
proof of Lemma 2.4.2, with the appropriate modi�cations. Therefore, we get

X

� 2 Spec(� )\ R> 0

sup
p2 M; g 2 SL2 (R)

jD �
� f (p; g)j �

C1;s� 3Cs;rot C0
Spec

4�
kf kW s ;

whereC0
Spec is as in Theorem 2.1.8.

To conclude the proof of Theorem 2.1.21, it is left to take care of the remainder
term Rf . We easily estimate, from the bound (2.1.18),

jR f (p; g)j = jR 4� (f � Rk2 (g))( p; t(g)) j �
CSpecC1;s� 3

4�



 f � Rk2 (g)





W s
(t(g) + 1) e� t (g)

�
CSpecC1;s� 3Cs;rot

4�
kf kW s (2 logkgkop + 1) kgk� 2

op

for any p 2 M and g 2 SL2(R) with kgkop �
p

e.

This achieves the proof of Theorem 2.1.21.
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2.6 Distributional limit theorems for deviations
from the average

The purpose of this section is threefold, articulated in three subsections. First, we
establish the quantitative distributional convergence claimed in Proposition 2.1.16,
from which the qualitative statements in Theorem 2.1.15 follow directly; secondly, we
prove absence of a central limit theorem under the circumstances of Theorem 2.1.18,
and �nally we explore further ways of examining the statistical behaviour of averages
along circle arcs.

2.6.1 Quantitative distributional convergence

Let us �x the length parameter � 2 (0; 4� ], and consider a real-valued functionf
lying in the Sobolev spaceW s(M ) for some reals > 11=2. We are interested in the
statistical behaviour of the deviations from the mean

df (T; p) =
1
�

Z �

0
f � � X

T � r s(p) ds �
Z

M
f d vol ; T � 1; p 2 M

appropriately renormalized, as the time parameterT tends to in�nity and when
the base pointp is sampled according to the uniform probability measurevol on M
(which we abbreviate withp � vol). De�ne

� f = inf f � 2 Spec(� ) \ R> 0 : D �
�;� f does not vanish identically onM g :

As in the hypotheses of Proposition 2.1.16, we assume that� f is �nite, that is, the set
of Casimir eigenvalues over which the previous in�mum is taken is non-empty. Let
� f be the corresponding parameter, namely� f 2 R� 0 [ iR> 0 satis�es 1 � � 2

f = 4� f .
In order to quantify the rate of distributional convergence of the random variables
under consideration, we make use of the Lévy-Prokhorov metricdLP on the set
P (R) of Borel probability measures onR. We recall that this is de�ned as

dLP (�; � ) = inf f " > 0 : � (Y) � � (Y" ) + " and � (Y) � � (Y" ) + " for every Borel set

Y � Rg

for any �; � 2 P (R), whereY" denotes the open"-neighborhood of a subsetY with
respect to the Euclidean metric onR. The distancedLP induces the topology of
weak convergence of probability measures onP (R), namely the coarsest topology
for which the evaluation maps

P (R) 3 � 7!
Z

R
' d� 2 R ; ' : R ! R continuous and bounded

are continuous.
In forthcoming estimates we shall make use of the following trivial upper bound for
the Lévy-Prokhorov distance between the laws of two random variables de�ned on
the same probability space and taking on nearby values almost surely.
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Lemma 2.6.1. Let (
 ; F ; P) be a probability space," > 0. SupposeX; X 0: 
 ! R
are random variables satisfyingjX (! ) � X 0(! )j < " for P-almost every! 2 
 . If
� X and � Y denote the laws ofX and X 0, respectively, thendLP (� X ; � X 0) � " .

Proof. Let A � R be a Borel subset. The eventf X 2 Ag is contained in the event
f X 0 2 A" g, up to a P-negligible subset, by the assumption on the distance between
X and X 0. Therefore,

� X (A) = P(X 2 A) � P(X 0 2 A" ) = � X 0(A" ) < � X 0(A" ) + " ;

a similar inequality holds reversing the role of X and X 0, whence
dLP (� X ; � X 0) � " .

We now proceed with the proof of Proposition 2.1.16 by distinguishing the three
di�erent cases0 < � f < 1=4; � f = 1=4 and � f > 1=4.

Suppose �rst 0 < � f < 1=4. We would then like to show that the random variables

e
1� � f

2 T df (T; p) ; p � vol

converge in distribution, asT tends to in�nity, to the random variable D �
�;� f

f (p),
p � vol. Observe that, because of the asymptotic expansion (2.1.17) and the as-
sumption on � f , we have

e
1� � f

2 T df (T; p) � D �
�;� f

f (p) =
X

� 2 Spec(� ); � f <�< 1=4

e�
� f � �

2 T D �
�;� f (p)

+ e�
� f
2 T

 
X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

T

!

D +
�;� f (p) + sin

 
= �
2

T

!

D �
�;� f (p)

!

+
X

� 2 Spec(� ); 0<�< 1=4

e�
� f + �

2 T D +
�;� f (p)

+ "0

�
e�

� f
2 T D +

�; 1=4f (p) + Te�
� f
2 T D �

�: 1=4f (p)
�

+ e
1� � f

2 T R � f (p; T) ;

so that, owing to the uniform bound (2.1.16), we may estimate
�
�
�
�
�
e

1� � f
2 T df (T; p) � D �

�;� f
f (p)

�
�
�
�
�
�

C1;s� 3C0
Spec

�
kf kW s Te�

� f �< � next
f

2 T (2.6.1)

for any p 2 M and T � 1, where� next
f is the parameter corresponding to the smallest

eigenvalue� next
f of the Casimir operator exceeding32 � f .

By Lemma 2.6.1, and recalling the de�nitions ofP circ
�;f (T) and P �;f introduced in

Section 2.1.4, we get

dLP (P circ
�;f (T); P �;f ) �

C1;s� 3C0
Spec

�
kf kW s Te� � f T

32Observe that we may dispense with the additional factorT in the upper bound (2.6.1) whenever
� next

f 2 R.
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for every T � 1, with � f =
� f �< � next

f

2 .

Similarly, if � f = 1=4, we readily obtain from the expansion (2.1.17) that

T � 1e
T
2 df (T; p) � D �

�; 1=4f (p) = T � 1

 

D +
�; 1=4f (p)

+
X

� 2 Spec(� ); �> 1=4

 

cos

 
= �
2

T

!

D +
�;� f (p) + sin

 
= �
2

T

!

D �
�;� f (p)

!

+
X

� 2 Spec(� ); 0<�< 1=4

e� �
2 T D +

�;� f (p) + e
T
2 R � f (p; t)

!

for any p 2 M and T � 1; recalling the de�nition of the constant Cpos in (2.5.22),
we deduce the bound

�
�
�T � 1e

T
2 df (T; p) � D �

�; 1=4f (p)
�
�
� �

C1;s� 3Cpos

�
kf kW s T � 1 ;

so that, again by Lemma 2.6.1,

dLP (P circ
�;f (T); P �;f ) �

C1;s� 3Cpos

�
kf kW s T � 1

for every T � 1, as desired.

Finally, for � f > 1=4, we have from the asymptotics (2.1.17) that

e
T
2 df (T; p) � "0D +

�; 1=4f (p) �
X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

T

!

D +
�;� f (p)

+ sin

 
= �
2

T

!

D �
�;� f (p) =

=
X

� 2 Spec(� ); 0<�< 1=4

e� �
2 T D +

�;� f (p) + e
T
2 R � f (p; T)

(2.6.2)

for any p 2 M and T � 1, from which we deduce what follows. Let� � be the
spectral gap ofS = � nH, de�ned in (2.1.19), and� � the corresponding parameter.

ˆ If � � < 1=4, then (2.6.2) and (2.1.16) give
�
�
�
�
�
e

T
2 df (T; p) � "0D +

�; 1=4f (p) �
X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

T

!

D +
�;� f (p)

+ sin

 
= �
2

T

!

D �
�;� f (p)

�
�
�
�
�
�

C1;s� 3C0
Spec

�
kf kW s e� � �

2 T ;

whence

dLP (P circ
�;f (T); P �;f (T)) �

C1;s� 3C0
Spec

�
kf kW s e� � �

2 T

for every T � 1.
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ˆ If � � � 1=4, then (2.6.2) and (2.1.18) give
�
�
�
�
�
e

T
2 df (T; p) � "0D +

�; 1=4f (p) �
X

� 2 Spec(� ); �> 1=4

cos

 
= �
2

T

!

D +
�;� f (p)

+ sin

 
= �
2

T

!

D �
�;� f (p)

�
�
�
�
�
�

C1;s� 3CSpec

�
kf kW s (T + 1) e� T

2 ;

we deduce that

dLP (P circ
�;f (T); P �;f (T)) �

C1;s� 3CSpec

�
kf kW s (T + 1) e� T

2

for every T � 1.

This completes the proof of Proposition 2.1.16.

2.6.2 Failure of a distributional limit theorem

We now turn to the proof of Theorem 2.1.18. Once again, we consider a �xed length
parameter� 2 (0; 4� ] and a function f 2 W s(M ) for some reals > 11=2. This time,
we suppose that the coe�cients D �

�;� f vanish identically on M for any Casimir
eigenvalue� > 0. As a result, the asymptotic expansion provided in Theorem 2.1.8
reduces to

1
�

Z �

0
f � � X

T � r s(p) ds =
Z

M
f d vol + e� T

Z T

1

X

n2 I (0)

� G�;n f 0;n (p; � ) d�

+
X

n2 I (0)

R �; 0;n f 0;n (p; T) + R �; df (p; T)
(2.6.3)

for any p 2 M and T � 1, whereR �; d is de�ned in (2.5.12).
The estimates carried out in Section 2.5.2 lead to the bound

�
�
�
�
�

X

n2 I (0)

R �; 0;n f 0;n (p; T) + R �; df (p; T)

�
�
�
�
�
�

�
(8e� + � 0)C1;s� 3CSpec;3 supf 1; Cdiscg

�
kf kW s e� T :

(2.6.4)

On the other hand, by means of the explicit expression forG�;n f 0;n given in (2.3.7),
we expand

X

n2 I (0)

� G�;n f 0;n (p; � ) =
2

� (1 � e� 2� )

X

n2 I (0)

(Uf 0;n � � X
� (p) � Uf 0;n � � X

� � r � (p))

+
e� 2�

� (1 � e� 2� )2

X

n2 I (0)

2in (f 0;n � � X
� (p) � f 0;n � � X

� � r � (p))

�
e� �

� (1 � e� 2� )2

X

n2 I (0)

Z �

0
f 0;n � � X

� � r s(p) ds

+
2e� �

� (1 � e� 2� )

X

n2 I (0)

Z �

0
Xf 0;n � � X

� � r s(p) ds ;
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from which
X

n2 I (0)

� G�;n f 0;n (p; � ) =
2

� (1 � e� 2� )
(Uf 0 � � X

� (p) � Uf 0 � � X
� � r � (p)) + R Gf (p; � ) ;

where

jR Gf (p; � )j �
1

(1 � e� 2)2

 

kf kW s e� 2� + kf k1 e� � + 2 kf kC1 e� � (1 � e� 2� )

!

�
1 + C0;s + 2C1;s

(1 � e� 2)2
kf kW s e� � ;

(2.6.5)

using the bound1 � e� 2� � 1 � e� 2 valid for any � � 1.
Let now (BT )T > 0 be a collection of positive real numbers such thatBT ! 1 as
T ! 1 . In light of (2.6.3), (2.6.4) and (2.6.5), and because of the assumption on
(BT )T > 0, the distributional limits of the random variables

eT
�

1
�

R�
0 f � � X

T � r s(p) ds �
R

M f d vol
�

BT
; p � vol

asT tends to in�nity coincide with the distributional limits of the random variables

2
�

RT
1

1
1� e� 2� (Uf 0 � � X

� (p) � Uf 0 � � X
� � r � (p)) d�

BT
; p � vol : (2.6.6)

When � = 4� , we haver4� (p) = p, so that the integrand in the numerator of the
above expression vanishes. Therefore, the distributional limit we are seeking after
equals to zero almost surely, which proves Theorem 2.1.18.
As to Remark 2.1.19, suppose now� 2 (0; 4� ] is arbitrary, and that Uf 0 is a cobound-
ary for (� X

t )t2 R: there exists a measurable functiong: M ! C with 33 �nite norm

kgkL 1 (M; vol) = inf f � 2 R> 0 : jg(p)j � � for vol-almost everyp 2 M g

such that, for all T > 0, it holds
Z T

0
Uf 0 � � X

� (p) d� = g � � X
T (p) � g(p)

for vol-almost everyp 2 M .
It follows trivially that, for every T > 0,

�
�
�
�
�

Z T

1

1
1 � e� 2�

(Uf 0 � � X
� (p) � Uf 0 � � X

� � r � (p)) d�

�
�
�
�
�
�

4
1 � e� 2

kgkL 1 (M; vol)

for vol-almost everyp 2 M . As a result, the distributional limit as T ! 1 of the
random variables in (2.6.6) vanishes almost surely, sinceBT ! 1 .

33More accurately, this is the notion of a measurable coboundary; by the celebrated work of
Livsic [129] on the cohomological equation for Anosov �ows, the condition is actually equivalent
to the seemingly more restrictive one ofUf 0 being a continuous coboundary, namely of requiring
the transfer function g to be continuous.
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Remark 2.6.2. Slightly more generally, whenUf 0 is cohomologous to a constant
function, namely it di�ers from a constant function by a coboundary, any distribu-
tional limit of the random variables in (2.6.6) is almost surely constant.
Assume nowUf 0 is not cohomologous to a constant function (and� 6= 4� ). The clas-
sical central limit theorem for geodesic ergodic integrals (see [195] for the constant
curvature case, and [168] for variable negative curvature) gives that both

RT
1 Uf 0 � � X

� (p) d� �
R

M Uf 0 d vol
p

T
; p � vol

and RT
1 Uf 0 � � X

� � r � (p) d� �
R

M Uf 0 d vol
p

T
; p � vol

converge in distribution to a non-trivial centered Gaussian random variable asT
tends to in�nity. A priori , the combination of these two distributional convergences
doesn't provide any information on the distributional limits of the di�erence, which
is what appears in (2.6.6) up to the constant factor2=� ; it would be desirable
to reach a full understanding of this limiting distributional behaviour by carefully
inspecting the dependence properties of the random variables

RT
1 Uf 0 � � X

� (p) d� and
RT

1 Uf 0 � � X
� � r � (p) d� as p is sampled according to the uniform measure onM .

2.6.3 Some re�ections on temporal distributional limit the-
orems

An upshot of the two foregoing subsections is the following consideration: examining
the statistical behaviour, for large timesT, of the (appropriately renormalized)
averages

1
�

Z �

0
f � � X

T � r s(p) ds

by randomly sampling the base pointp according to the uniform measure onM
leads to meaningful asymptotic results if and only if34 at least one of the coe�cients
D �

�;� f does not vanish identically onM . Irrespective of whether this is the case or
not, it is natural to look for di�erent sources of randomness, which might capture
oscillatory behaviours more accurately. In accordance with the perspective of tem-
poral distributional limit theorems, pioneered by Dolgopyat and Sarig [41] in the
context of ergodic sums and integrals, we enquire about the existence of non-trivial
distributional limits for the random variables

et
�

1
�

R�
0 f � � X

t � r s(p) ds
�

� AT

BT
;

where p is a �xed base point in M , (AT )T > 0 and (BT )T > 0 are collections of real
numbers, possibly depending onp, with BT > 0 and BT ! 1 as T ! 1 , and the
time t is chosen uniformly at random in the interval[0; T].

34Possibly with the exception of the case examined at the end of Section 2.6.2.
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Remark 2.6.3. It is informative to compare this to the quest for temporal limit
theorems for ergodic integrals along the orbits of a �ow: see, in particular, [41,
Def. 1.3]. Observe notably that our rescaling of the circle-arc average1

�

R�
0 f � � X

t �
r s(p) ds by a factor of et (the latter being asymptotically of the same order of the
length of the expanding circle arc along which the average is taken) parallels the
renormalization of ergodic averages by the linear factort.

Let us denote byU[0;T ] the uniform probability measure on the compact interval
[0; T], for any T > 0. If there is a non-identically vanishing coe�cient D �

�;� f for
some Casimir eigenvalue� > 0, then a rather straightforward adaptation of the proof
of [41, Cor. 5.7] shows that, forvol-almost everyp 2 M , any limiting distribution of

et
�

1
�

R�
0 f � � X

t � r s(p) ds
�

� AT

BT
; t � U [0;T ] (2.6.7)

is necessarily constant almost surely, no matter the choice of the constantsAT and
BT .
Suppose now that the coe�cientsD �

�;� f vanish identically on M for any positive
Casimir eigenvalue� . The deduction in Section 2.6.2 applies almost verbatim, show-
ing that the distributional limits of the random variables in (2.6.7) are the same as
the limits of

2
�

Rt
1

1
1� e� 2� (Uf 0 � � X

� (p) � Uf 0 � � X
� � r � (p)) d� � AT

BT
; t � U [0;T ] (2.6.8)

asT tends to in�nity. In the �rst place, this allows tu rule out the existence of any
non-trivial (namely not almost surely constant) distributional limit whenever one of
the following conditions is met:

(a) � = 4� ;

(b) Uf 0 is cohomologous to a constant function for the geodesic �ow.

On the other hand, whenUf 0 is not cohomologous to a constant function, then
the geodesic ergodic integrals

Rt
1 Uf 0 � � X

� (p) d� are well-approximated by Brownian
trajectories. More precisely, the Almost Sure Invariance Principle (see [198, 199],
[156, Chap. 1] and [38]) for geodesic ergodic integrals asserts that there exist an
auxiliary probability space (
 ; F ; P) and two continuous-time stochastic processes
(X t )t � 0 and (B t )t � 0 de�ned on (
 ; F ; P) such that the following hold:

ˆ the law of the process(X t )t � 0 under the probability measureP coincides with
the law of the process

� Rt
0 Uf 0 � � X

� (p) d�
�

t � 0
when p is sampled according to

the probability measurevol;

ˆ the process (B t )t � 0 is a standard one-dimensional Brownian motion (cf.
[118, Chap. 2]);

ˆ there exists� 2 R� such that, for P-almost every! 2 
 ,

jX t (! ) � B � 2 t (! )j = o(
p

t) as t ! 1 : (2.6.9)
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As typical Brownian trajectories are of size�
p

t at time t, the approximation
in (2.6.9) enables to transfer classical results about the statistical behaviour of Brow-
nian paths to analogous properties for geodesic ergodic integrals. In particular, there
is no distributional limit 35 for

Rt
0 Uf 0 � � X

� (p) d� � AT

BT
; t � U [0;T ] (2.6.10)

asT tends to in�nity (cf. [41, Sec. 3.1]). Since the process
� Rt

0 Uf 0 � � X
� � r � (p) d�

�

t � 0
has the same law, forp � vol, as (X t (! )) t � 0 for ! � P, the same applies to the
random variables

Rt
0 Uf 0 � � X

� � r � (p) d� � AT

BT
; t � U [0;T ] : (2.6.11)

As already argued in Section 2.6.2 in the situation where the pointp is selected ran-
domly and the timeT is �xed, here again the absence of distributional limits for each
of the summands does not rule out, in principle, the possibility of non-trivial limits
for the di�erence, hence for the random variables in (2.6.8). Once more, a painstak-
ing analysis of the dependence features of the two processes in (2.6.10) and (2.6.11)
might clarify the seemingly elusive pathwise behaviour of their di�erence.

2.7 The hyperbolic lattice point counting prob-
lem

This �nal section is consecrated to the applications of our equidistribution results
to lattice point counting problems in the hyperbolic plane; speci�cally, we shall
�rst prove the precise asymptotics for the averaged counting function stated in
Proposition 2.1.23 and subsequently deduce Theorem 2.1.24 on the error estimate
for the pointwise counting.
Let � be a cocompact lattice inSL2(R), and denote bydH the hyperbolic distance
function on the hyperbolic upper-half planeH (see Section 2.2.1). For each real
number R > 0, let BR be the closeddH-ball of radius R centered at the pointi 2 H,
and de�ne N (R) = j� � i \ BR j, the cardinality of intersection of the � -orbit of i
with BR .
Recall also from Section 2.2.1 thatSL2(R) acts onH by Möbius transformations. In
what follows, we identity the quotient manifold SL2(R)=SO2(R) with H whenever
convenient, by means of the di�eomorphismgSO2(R) 7! g � i; g 2 SL2(R). The
hyperbolic area measuremH (namely the volume measure arising from the hyperbolic
structure on H) is the Radon measure onH with density dmH(x; y) = y� 2dxdy with
respect to the induced Lebesgue measure onH � C.

Notation. In order not to overburden notation in the sequel, we shall denoteSL2(R)
by G and SO2(R) by K .

35Actually, when Uf 0 has zero average overM , AT = 0 and BT =
p

T, any random variable
may appear as distributional limit along an appropriate subsequence(Tn )n 2 N of times: see [41,
Thm. 3.2].
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2.7.1 Asymptotics for the averaged counting function

For any subsetA � G=K , we denote by1A the indicator function of the setA. For
any R 2 R> 0, we de�ne a function FR : G=� ! R� 0 by

FR(g�) =
jg� � i \ BR j

mH(BR)
=

1
mH(BR)

X

 � \ K 2 � =� \ K

1B R (gK ) ; g 2 G; (2.7.1)

observe that the functionFR is the subject of the averaged counting result in Propo-
sition 2.1.23, which we now set out to prove.

Remark 2.7.1. We choose to deal with spaces of left cosets in the sequel; in par-
ticular, we replace the homogeneous spacesM = � nG we have been considering so
far with G=� , identifying them via the di�eomorphism � g 7! g� 1� .

We follow the classical argument of Eskin and McMullen [59], which relies on the
well-known folding-unfolding formula for invariant measures on homogeneous spaces.
For the sake of completeness, we recall it in the setting of the groupG = SL2(R),
referring the reader to [65, Sec. 2.6] or to [161, Chap. 1] for the general statements
and their proofs.

Proposition 2.7.2. 1. Let H < G be a unimodular closed subgroup. Then there
exists a non-zeroG-invariant positive Radon measure on the quotient space
G=H, which is uniquely determined up to positive real scalars. Moreover,
if � G and � H are Haar measures36 on G and H , respectively, there exists a
unique normalization � G=H of the G-invariant measure on G=H such that,
for any continuous compactly supported function' : G ! C, the following
folding-unfolding formula holds:

Z

G
' d� G =

Z

G=H

Z

H
' (gh) d� H (h) d� G=H (gH) : (2.7.2)

2. Let H < L be closed subgroups ofG, and supposeG=L admits a non-zero �nite
G-invariant measure� G=L and L=H admits a non-zero �nite L-invariant mea-
sure � L=H . Then G=H admits a non-zero �nite G-invariant measure � G=H .
Moreover, if � G=L ; � L=H and � G=H are compatibly normalized, then, for any
continuous compactly supported function' : G=H ! C, it holds

Z

G=H
' d� G=H =

Z

G=L

Z

L=H
' (glH ) d� L=H (lH ) d� G=L (gL) : (2.7.3)

By means of standard approximation arguments in measure theory, formula (2.7.2)
(resp. formula (2.7.3)) holds for any Borel-measurable function' : G ! C (resp.
' : G=H ! C) which either takes positive real values or is integrable with respect
to � G (resp. � G=H ).
Let now mK be the unique probability Haar measure on the compact groupK ,
and normalize the Haar measuremG on G so that, under the identi�cation of G=K

36The group G is perfect, hence unimodular; thus� G is also a right Haar measure.
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with H, the resulting G-invariant measure onG=K (given by Proposition 2.7.2)
corresponds to the hyperbolic area measuremH. Let mG=� be the uniqueG-invariant
�nite Borel measure onG corresponding, according to Proposition 2.7.2, to the given
choice of Haar measure onG and to the counting measure on the discrete group� .
Similarly, endowing the �nite discrete group� \ K with the counting measure, we
indicate with mG=� \ K , mK= � \ K and m� =� \ K the induced measures on the respective
homogeneous spaces. Recall also that withmK �� we indicate the uniqueK -invariant
Borel probability measure supported on the compactK -orbit of the identity coset
� inside G=� (see the paragraph preceding Theorem 2.1.21).
The volumes of the homogeneous spacesG=� and K=� \ K with respect to the
measuresmG=� and mK= � \ K are indicated with covolK (� \ K ) and covolG(�) , re-
spectively.

Fix now a real parameters > 11=2 and a test function  2 W s(G=�) . We expand,
for any R > 0,

Z

M
 F R dmG=� =

Z

M
 (g�)

 
1

mH(BR)

X

 � \ K 2 � =� \ K

1B R (gK )

!

dmG=� (g�)

=
1

mH(BR)

Z

M

Z

� =� \ K
 (g�) 1B R (gK ) dm� =� \ K ( � \ K ) dmG=� (g�)

=
1

mH(BR)

Z

G=� \ K
 (g�) 1B R (gK )dmG=� \ K (g� \ K )

=
1

mH(BR)

Z

G=K

Z

K= � \ K
 (gk�) 1B R (gK ) dmK= � \ K (k� \ K ) dmG=K (gK )

=
1

mH(BR)

Z

B R

Z

K= � \ K
 dg� mK= � \ K dmH(gK )

=
covolK (� \ K )

mH(BR)

Z

B R

Z

G=�
 dg� mK �� dmH(gK ) :

(2.7.4)

In the previous chain of equalities, we applied, in successive order,

(1) the de�nition (2.7.1) of the function FR ,

(2) the fact that the invariant measure on the discrete space� =� \ K given by
Proposition 2.7.2 is the counting measure,

(3) formula (2.7.3) to the tower of subgroups� \ K < � < G ,

(4) formula (2.7.3) to the tower of subgroups� \ K < K < G ,

(5) the identi�cation of H with G=K and of mH with mG=K ,

(6) the relationship mK= � \ K = covolK (� \ K )mK �� , which is derived from the
fact that mK �� is a probability measure, the de�nition of covolK (� \ K ) and
uniqueness up to scalars of theK -invariant measure onK=� \ K , the latter
being isomorphic to the orbitK � � as a topologicalK -homogeneous space.
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We may now replace the inner integral in the last expression of (2.7.4) with the
asymptotic expansion provided by Theorem 2.1.21 (with the caveat of Remark 2.7.1),
thereby obtaining

Z

G=�
 F R dmG=� =

covolK (� \ K )
covolG(�)

Z

G=�
 dmG=�

+
covolK (� \ K )

mH(BR)

Z

B R

 
X

� 2 Spec(� ); �> 1=4

kgk� 1
op

�
cos (= � logkgkop)D +

�  (� ; g)

+ sin ( = � logkgkop)D �
�  (� ; g)

�

+
X

� 2 Spec(� ); 0<�< 1=4

kgk� (1+ � )
op D +

�  (� ; g) + kgk� (1� � )
op D �

�  (� ; g)

+ "0

�
kgk� 1

op D +
1=4 (� ; g) + 2 kgk� 1

op logkgkopD �
1=4 (� ; g)

�

+ R (� ; g)

!

dmH(gK ) :

(2.7.5)

We shall need the following analogue of the classical integration formula on spheres
in Euclidean spaces: for anyr > 0, let Sr = @Br = f z 2 H : dH(z; i) = rg and � r

the induced hyperbolic length measure on the circleSr .

Proposition 2.7.3. Let f : H ! C be integrable with respect tomH. Then
Z

H
f dmH =

Z 1

0

Z

Sr

f (z) d� r (z) dr

The proof does not di�er from the Euclidean case, for which we refer to
[65, Thm. 2.49].

De�ne now, for any positive Casimir eigenvalue� and  as above,

� �
 ;� (r ) =

Z

Sr

D �
�  (� ; z) d� r (z) ; r > 0:

From (2.7.5) we get, thanks to Proposition 2.7.3,

Z

G=�
 F R dmG=� =

covolK (� \ K )
covolG(�)

Z

G=�
 dmG=� +

covolK (� \ K )
mH(BR)

 
X

� 2 Spec(� ); �> 1=4

Z R

0
e� r

2

 

cos

 
= �
2

r

!

� +
 ;� (r ) + sin

 
= �
2

r

!

� �
 ;� (r )

!

dr

+
X

� 2 Spec(� ); 0<�< 1=4

Z R

0
e� 1+ �

2 r � +
 ;� (r ) + e� 1� �

2 r � �
 ;� (r ) dr

+ "0

 Z R

0
e� r

2 � +
 ; 1=4(r ) + re� r

2 � �
 ; 1=4(r ) dr

!

+
Z R

0

Z

Sr

R (� ; z) d� r (z) dr

!

:

(2.7.6)
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Let  � be the orthogonal projection of onto the closed subspaceW s(H � ). By
means of the uniform bounds (2.1.16) on the coe�cients, we estimate

X

� 2 Spec(� )\ R> 0

j� �
 ;� (r )j �

X

� 2 Spec(� )\ R> 0



 D �

�  (� ; �)




1

Z

Sr

d� r (z)

� 2�
C1;s� 3C0

Spec

4�
k kW s sinhr

(2.7.7)

for any r > 0, as the hyperbolic length ofSr equals37 2� sinhr . Recalling that
mH(BR) = 2 � (coshR � 1) for any R > 0, we deduce from (2.7.6) that

Z

G=�
 F R dmG=� =

covolK (� \ K )
covolG(�)

Z

G=�
 dmG=�

+ covolK (� \ K )

 

e� R
2

X

� 2 Spec(� ); �> 1=4

� +
 ;� (R) + � �

 ;� (R)

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 R � +

 ;� (R) + e� 1� �
2 R � �

 ;� (R)

+ "0

�
e� R

2 � +
 ; 1=4(R) + Re� R

2 � �
 ; 1=4(R)

�
+   (R)

!

for any R � 1, where we have set

� +
 ;� (R) =

e� R
2

� (1 � 2e� R + e� 2R)

Z R

0
e� r

2 cos

 
= �
2

r

!

� +
 ;� (r ) dr ; � > 1=4 ;

� �
 ;� (R) =

e� R
2

� (1 � 2e� R + e� 2R)

Z R

0
e� r

2 sin

 
= �
2

r

!

� �
 ;� (r )dr ; � > 1=4 ;

� �
 ;� (R) =

e� 1� �
2 R

� (1 � 2e� R + e� 2R)

Z R

0
e� 1� �

2 r � �
 ;� (r ) dr ; 0 < � < 1=4 ;

� +
 ; 1=4(R) =

e� R
2

� (1 � 2e� R + e� 2R)

Z R

0
e� r

2 � +
 ; 1=4(r ) dr ;

� �
 ; 1=4(R) =

R� 1e� R
2

� (1 � 2e� R + e� 2R)

Z R

0
e� r

2 � �
 ; 1=4(r ) dr ;

  (R) =
e� R

� (1 � 2e� R + e� 2R)

Z R

0

Z

Sr

R (� ; z) d� r (z) dr :

Because of (2.7.7), we have the following estimates on the previous coe�cients: for
any R � 1,

X

� 2 Spec(� )\ R> 0

j� �
 ;� (R)j �

5C1;s� 3C0
Spec

2�
k kW s

37This is an elementary veri�cation in hyperbolic geometry, for instance approximating circles
with regular n-gons; their hyperbolic perimeter can in turn be easily computed by means of explicit
formulas for the hyperbolic distance (see [99, Thm. 1.2.6]) and of the hyperbolic cosine law (see
[99, Thm. 1.5.2]).

Similarly, the hyperbolic area of a ball is easily computed by approximation via the Gauss-Bonnet
formula for the area of hyperbolic triangles (cf. [99, Thm. 1.4.2]).
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and

j  (R)j �
5C1;s� 3CSpec

4�
k kW s (R + 1) e� R ;

using the (crude) bound(1� 2e� R + e� 2R)� 1 � 5 in each of the previous inequalities.

This establishes Proposition (2.1.23) in its entirety.

2.7.2 Error estimate for the pointwise counting problem

This subsection is devoted to the deduction of the error estimate for the counting
problem stated in Theorem 2.1.24, starting from the asymptotic expansion (2.1.27)
for the averaged counting function.
Recall from (2.7.1) that, for any real numberR > 0, the ratio N (R)=mH(BR) equals
the value of the function FR at the identity coset � 2 G=� . In order to �nd a
convenient approximation for the latter, we shall compare it with the averages

Z

G=�
 F R dmG=�

where the function ranges over a suitably de�ned approximate identity38 in G=� .
We now present the details. Let us �x a parameter� 2 R> 0, on which we shall
subsequently impose conditions according to the needs of the argument; choose

(a) an open symmetric39 neighborhoodU� of the identity in G such that, for any
R > 0,

BR� � �
\

g2 U�

g � BR �
[

g2 U�

g � BR � BR+ � (2.7.8)

(b) and a smooth function  � : G=� ! R� 0 with compact support contained in
the open setU� � = f g� : g 2 U� g, and satisfying

Z

G=�
 � dmG=� = 1 : (2.7.9)

Remark 2.7.4. The existence, for any� > 0, of a neighborhoodU� with the prop-
erties claimed above is routinely referred to in the literature (see, for instance, [59])
as the well-roundednessproperty of the collection of balls(BR)R> 0. A geometric
condition of this sort a�ords to leverage equidistribution results to study lattice
point counting problems.

Observe that we may harmlessly replaceU� with

KU � =
[

k2 K

kU� ;

38The terminology is common in the context of locally compact groups; see, for instance, [65,
Sec. 2.5].

39This means that U� coincides with the set of inverses of its elements.
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and thus assume thatU� is saturated with respect to left translations by elements
of K . Property (2.7.8) is una�ected: for anyk 2 K and z 2 H, we have

dH(k � z; i) = dH(k � z; k � i ) = dH(z; i) ;

as the subgroupK �xes i and acts by hyperbolic isometries; thereforek � B r = B r

for any k 2 K and any r > 0. As a consequence of this, we might and shall assume
that  � is K -invariant.

We now express, the ratioN (R)=mH(BR), for any R > 0, as

FR(�) = FR(�) �
Z

G=�
 � FR dmG=� +

Z

G=�
 � FR dmG=�

=
Z

G=�
 � (g�)( FR(�) � FR(g�)) dmG=� (g�) +

Z

G=�
 � FR dmG=� ;

where the second inequality follows from the property (2.7.9). Let us callE� (R), for
notational simplicity, the quantity

Z

G=�
 � (g�)( FR(�) � FR(g�)) dmG=� (g�) ;

in view of the asymptotics (2.1.27) applied to
R

G=�  � FR dmG=� , we may write

FR(�) =
covolK (� \ K )

covolG(�)
+ E� (R)

+ covolK (� \ K )

 

e� R
2

X

� 2 Spec(� ); �> 1=4

� +
 � ;� (R) + � �

 � ;� (R)

+
X

� 2 Spec(� ); 0<�< 1=4

e� 1+ �
2 R � +

 � ;� (R) + e� 1� �
2 R � �

 � ;� (R)

+ "0

 

e� R
2 � +

 � ;1=4(R) + Re� R
2 � �

 � ;1=4(R)

!

+   � (R)

!

:

(2.7.10)

We estimate, for anyR > 0,

jE� (R)j �
Z

G=�
 � (g�) jFR(�) � FR(g�) j dmG=� (g�) � sup

g2 U�

jFR(�) � FR(g�) j ;

(2.7.11)
the last inequality being a consequence of (2.7.9) and the fact that supp � � U� � .
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Now, for any g 2 U� , we have

jFR(�) � FR(g�) j =

�
�
� j� � H \ BR j � j g� � H \ BR j

�
�
�

mH(BR)

=

�
�
� j� � H \ BR j � j � � H \ g� 1 � BR j

�
�
�

mH(BR)

�

�
�
�� � H \

�� S
g2 U�

g � BR

�
n

� T
g2 U�

g � BR

�� �
�
�

mH(BR)

�
N (R + � ) � N (R � � )

mH(BR)

= FR+ � (�)
mH(BR+ � )
mH(BR)

� FR� � (�)
mH(BR� � )
mH(BR)

;

(2.7.12)

where the second-to-last inequality follows from (2.7.8). ChooseR0 = R0(�) > 0
such that the quantities

M = sup
r � R0

Fr (�) and m = inf
r � R0

Fr (�)

are non-zero and �nite40. Plugging (2.7.12) into (2.7.11), we get that, for any
R � 2R0 and � < R 0,

jE� (R)j � (M � m)

 
mH(BR+ � )
mH(BR)

�
mH(BR� � )
mH(BR)

!

=
(M � m)

1 � 2e� R + e� 2R

 

e� (1 � 2e� (R+ � ) + e� 2(R+ � )) � e� � (1 � 2e� (R� � ) + e� 2(R� � ))

!

� (M � m)(ce� � e� � ) ;
(2.7.13)

where we might for example takec = c� = 1+ e� 2R 0

1� 2e� R 0
.

We now let the parameter� be a function of the radiusR; for reasons which we
will shortly elucidate (see Remark 2.7.6), we let� = � (R) = e� �R in (2.7.10), for a
certain � > 0 to be determined later on. In this way, we obtain an expression of the

40A straightforward modi�cation of the e�ective argument we are running leads to the well-known
non-e�ective convergence

FR (�) R !1�!
covolK (� \ K )

covolG (�)
2 R> 0 :
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form

FR(�) =
covolK (� \ K )

covolG(�)
+ Ee� �R (R)

+ covolK (� \ K )
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X

� 2 Spec(� ); �> 1=4
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X
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!

+   e� �R (R)

!

;

(2.7.14)

which does not depend on the parameter� any longer.
Multiplying by mH(BR) on both sides of (2.7.14) yields

N (R) =
covolK (� \ K )

covolG(�)
mH(BR) + � (1 � 2e� R + e� 2R)eREe� �R (R)

+ � (1 � 2e� R + e� 2R) covolK (� \ K )
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X
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2 R � +
 e� �R ;� (R) + e

1+ �
2 R � �

 e� �R ;� (R)

+ "0

 

e
R
2 � +

 e� �R ;1=4(R) + Re
R
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 e� �R ;1=4(R)

!

+ eR   e� �R (R)

!

:

(2.7.15)

In order to reach an accurate upper bound for the error

E(R) =

�
�
�
�
�
N (R) �

covolK (� \ K )
covolG(�)

mH(BR)

�
�
�
�
�
;

in our counting problem, it remains to determine which are the highest-order terms
in the expansion (2.7.15). To this end, it is relevant to estimate the Sobolev norms
of the functions  e� �R for R > 0, because of the bounds (2.1.26) and (2.1.28).

Lemma 2.7.5. For any 0 < � < 1, the function  � can be chosen to satisfy

k � kW s � � � (1+ s) k 1kW s (2.7.16)

for any s > 0.

Proof. Recall that  � is assumed to beK -invariant or, in other words, a smooth
compactly supported function on the two-dimensional manifoldK nG=� . Since any
Riemannian metric onK nG=� is equivalent, on a �xed compact coordinate ball con-
taining the identity coset Ke� , to the Euclidean metric on a compact neighborhood
of the origin in R2 (cf. [116, Lem. 13.28]), the problem of constructing � so to meet
our requirement can be transferred to the Euclidean plane. Speci�cally, we would
like to construct a collection( � )0<� � 1 of molli�ers (cf. [24, Sec. 4.4]) so that (2.7.16)
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is satis�ed, wherek�kW s are now the standard fractional Sobolev norms onR2. A
straightforward computation allows to ascertain that the customary choice

 � (x) =
1
� 2

 1

 
x
�

!

; x 2 R2;

where  1 is a �xed compactly supported smooth nonnegative function with unit
average overR2, ful�lls (2.7.16).

Henceforth, we assume that the collection( � )0<�< 1 satis�es the condition in
Lemma 2.7.5.
We remind the reader that we indicate with� � the spectral gap of the hyperbolic
surfaceS = � nH, that is, the in�mum of the set Spec(� ) \ R> 0. Also, we denote
by � � the complex number uniquely determined by the properties� � 2 R� 0 [ iR> 0

and 1 � � 2
� = 4� � .

Sincee� � e� � � 2� for � � 0, we deduce from (2.7.13) that the termeREe� �R (R) is
at most of ordere(1� � )R . On account of Lemma 2.7.5, the highest-order term in the
expression

e
R
2

X

� 2 Spec(� ); �> 1=4

� +
 e� �R ;� (R) + � �

 e� �R ;� (R) +
X

� 2 Spec(� ); 0<�< 1=4

e
1� �

2 R � +
 e� �R ;� (R)

+ e
1+ �

2 R � �
 e� �R ;� (R) + "0

 

e
R
2 � +

 e� �R ;1=4(R) + Re
R
2 � �

 e� �R ;1=4(R)

!

+ eR   e� �R (R)

is e
1+ < � �

2 R �  e� �R ;� � (R); because of Lemma 2.7.5 and the bound (2.1.26), the latter
is at most of order

e
1+ < � �

2 Re(1+ s)�R = e
1+ < � � +2(1+ s) �

2 R :

Remark 2.7.6. The reason for choosing� to decay exponentially fast withR be-
comes now apparent: it is the only way to get a sensible comparison between the
orders of the two terms considered above.

Ostensibly, the optimal choice of the parameter� for our purposes is

� =
1 � < � �

2(2 + s)
;

which realizes the equality of exponents

1 � � =
1 + < � � + 2(1 + s)�

2
:

Bearing in mind that the K -invariance of  e� �R allows to chooses can arbitrar-
ily close to 9=2 (see Theorem 2.1.12), it is straightforward to deduce that, setting
� � = 1

13(1 � < � � ), we have

lim
R!1

E(R)
e(1� � � + " )R

= 0

for any " > 0, which establishes Theorem 2.1.24.



Chapter 3

Statistical limit theorems for
horocycle �ows

In this chapter we set forth, in a mildly expanded fashion, the result obtained by the
author in the appendix to [175], concerning the long-term statistical behaviour of
orbits of the horocycle �ow on compact hyperbolic surfaces. Speci�cally, we provide
a streamlined approach to the temporal distributional limit theorem for horocycle
ergodic integrals originally established by Dolgopyat and Sarig in [41]. The argument
builds fundamentally upon the asymptotic expansion of horocycle ergodic averages,
due initially to Flaminio and Forni [63] and subsequently rediscovered in a simpli�ed
fashion by Ravotti in [175]. In combination with a thickening argument inspired by
the proof of [41, Thm. 4.1], this allows to transfer the problem to the distributional
features of geodesic orbits, which are well understood thanks to the classical central
limit theorems of Sinai [195] and Ratner [168] for geodesic ergodic integrals.
We precede the exposition of our results, which is content of Section 3.3, with a
succinct historical review of results pertaining to horocycle �ows (Section 3.1) and
with a discussion concerning the asympotic expansion of horocycle ergodic integrals
for compact quotients (Section 3.2), the latter being instrumental in the proof of
Theorem 3.3.1, which is the main result of the chapter.
Throughout this chapter, we shall adhere without further comment to the terminol-
ogy and notation introduced in Chapter 2, unless otherwise speci�ed.

3.1 The horocycle �ow on hyperbolic surfaces

A decisive role in the study of dynamical systems with hyperbolic features, among
which geodesic �ows on negatively curved manifolds feature prominently, is played
by the foliations of the space underlying the dynamics into stable and unstable leaves.
These are characterized in terms of equivalence relations which identify points in
the space having forward or backward orbits approaching each other in�nitesimally.
For accessible introductions to the vast subject of hyperbolic dynamics, we recom-
mend [26, Chap. 5] as well as the survey in [82].
In the case of the geodesic �ow on hyperbolic surfaces, it so happens that stable

100
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and unstable leaves can be described algebraically (just like the geodesic �ow itself,
cf. Section??) as orbits of one-parameter unipotent subgroups of the special linear
group SL2(R). Let us describe the situation in the simply connected case of the
hyperbolic planeH. Identifying its unit tangent bundle T1H with the projective
special linear groupPSL2(R), the geodesic �ow(a(H)

t )t2 R is given by

a(H)
t (g) = g

 
et=2 0
0 e� t=2

!

; g 2 PSL2(R); t 2 R;

where we adopt the standard matrix notation for equivalence classes inPSL2(R) as
well. In order to measure distances between di�erent geodesic orbits, we introduce
a left-invariant distance function1 d on PSL2(R). For any point x 2 PSL2(R), we
de�ne the stable manifold throughx as

W s(x) = f y 2 PSL2(R) : d(a(H)
t (x); a(H)

t (y)) ! 0 as t ! + 1g

and the unstable manifold throughx as

W u(x) = f y 2 PSL2(R) : d(a(H)
t (x); a(H)

t (y)) ! 0 as t ! �1g :

As a result of the left-invariance property ofd, elementary matrix manipulations
lead to the equalities

W s(x) =

(

x

 
1 u�

0 1

!

: u� 2 R

)

; Wu(x) =

(

x

 
1 0

u+ 1

!

: u+ 2 R

)

for any x 2 PSL2(R); it is then natural to consider the one-parameter �ows(h(H);s
t )t2 R

and (h(H);u
t )t2 R on PSL2(R) given by

h(H);s
t (x) = x

 
1 t
0 1

!

; h(H);u
t (x) =

 
1 0
t 1

!

; x 2 PSL2(R); t 2 R; (3.1.1)

which are called, respectively, the stable horocycle �ow and the unstable horocycle
�ow.
As the two �ows commute with the isometric action ofPSL2(R) on T1H (which is
given in matrix terms by left multiplication), they descend to one-parameter smooth
�ows (h(M );s

t )t2 R, (h(M );u
t )t2 R on any quotient M = ~� nPSL2(R), where~� is a discrete

subgroup ofPSL2(R).
As we partly illustrated so far, horocycle �ows on hyperbolic surfaces are inti-
mately intertwined with geodesic �ows, and their interplay has historically lead
to remarkable developments in the understanding of their geometric and dynam-
ical properties. From an ergodic-theoretic perspective, the relevance of the horo-
cycle �ow on �nite-volume quotients of PSL2(R) is multifaceted. For a start, it is
the quintessential example of a homogeneous �ow exhibiting parabolic behaviour

1For the purposes of the present discussion, it is immaterial whether it originates from a left-
invariant Riemannian metric on PSL2(R) or not.
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(cf. [83, Sec. 8]), serving thus as a test model for the poorly understood parabolic
paradigm. Moreover, it remarkably displays intermediate chaotic features, some
of which are commonly associated to strongly chaotic systems (mixing of all or-
ders [135], countable Lebesgue spectrum [155]) whereas others are to be found more
frequently in orderly (or slowly) chaotic systems (minimality [85] and unique er-
godicity [67] on compact quotients, zero entropy [80]). Finer rigidity properties of
horocycle �ows, including a classi�cation of joinings and factors, were investigated
by Ratner in [165, 166, 167] and in many ways paved the way for her successive
outstanding achievements [169, 170, 171, 172, 173] on unipotent rigidity.
Our work can be inscribed in the direction of research which concerns quantitative
ergodic properties of horocycle �ows, initiated by Ratner in [168]. Of particular
interest to us is the �ne long-term behaviour of horocycle ergodic integrals (de�ned
below in (3.2.1)). Furstenberg's unique ergodicity result [67] for compact quotients,
later extended by Dani [35] to a complete measure classi�cation in the �nite-volume
case and by Dani and Smillie [36] to non-e�ective equidistribution of horocycle or-
bits, implies that horocycle ergodic averages of continuous observables converge,
uniformly inside the ambient space, towards their space averages with respect to
the uniform measure. The �rst quantitative re�nements of this equidistribution
statement were provided by Burger in [28], who obtained polynomial bounds2 for
deviations of ergodic averages of su�ciently regular test functions. This was con-
siderably improved in the seminal work of Flaminio and Forni [63], who establish
precise asymptotic expansions of ergodic averages derived from a comprehensive
study of the cohomological equation and a full classi�cation of horocycle-invariant
distributions. Bufetov and Forni [27] went even further by providing a construc-
tion of certain Hölder functionals on the space of recti�able arcs which govern the
asymptotics of horocycle integrals, thereby deducing spatial limit theorems (cf. Sec-
tion 2.6.1) with non-Gaussian limiting distribution for a large class of observables.
Relying crucially on the work of Bufetov and Forni, Dolgopyat and Sarig [41] ex-
plored the deeper, single-orbit statistical behaviour of horocycle integrals, proving
a standard central limit theorem for a class of functions which is complementary to
the class to which Bufetov-Forni's result [27] applies.
A di�erent, more elementary method was employed by Ravotti in [175] to recover
Flaminio-Forni's asymptotics and give a more explicit description of the coe�cients
appearing in the expansion. The approach parallels entirely the strategy we adopted
in Chapter 2 (to which we refer for further historical remarks on this method, see
in particular Section 2.1.6) in order to prove Theorems 2.1.6 and 2.1.8.
In the forthcoming section, we present the relevant asymptotic expansions of horo-
cycle averages to be put to good use in Section 3.3 for the proof of our main result
(Theorem 3.3.1). A broader historical perspective on horocycle �ows is o�ered, for
instance, in [6, Chap. IV], [53, Chap. 11] and in the introduction to [27]; the reader
is equally invited to consult the latter reference for an exhaustive bibliography re-
garding quantitative results for the horocycle �ow in various contexts.

2We remark that the exponent in such bounds is half of the mixing exponent for the horocycle
�ow.
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3.2 Asymptotics of horocycle ergodic averages

We place ourselves in the same setting of the foregoing sections of the present
chapter: we let M = � nSL2(R) be a compact quotient by a discrete subgroup
� < SL2(R), endowed with the SL2(R)-invariant probability measure vol. We
shall con�ne our considerations to the stable horocycle �ow onM , de�ned through
right multiplication by upper-triangular unipotent matrices as in (3.1.1); since there
is a smooth conjugacy3 between the stable and the unstable horocyle �ow (see
[6, Chap. IV, Ÿ1]), this is a harmless restriction. Henceforth, the stable horocycle
�ow on M will be denoted by(ht )t2 R, whereas the unstable horocycle �ow is indi-
cated with (hu

t )t2 R. Keeping with earlier notation, we further denote by(� X
t )t2 R the

geodesic �ow onM .
Given a function f : M ! C, on which appropriate regularity assumptions shall be
shortly placed, we are concerned with the asymptotic behaviour of the horocycle
ergodic integrals Z t

0
f � hs(x) ds ; t 2 R> 0; x 2 M; (3.2.1)

as the time t tends to in�nity. The manifold M being compact, the �ow (ht )t2 R

is uniquely ergodic (as shown by Furstenberg in [67]), namely the measurevol is
the unique (ht )-invariant Borel probability measure onM . A standard functional-
analytic argument implies that

1
t

Z t

0
f � hs(x) ds t !1�!

Z

M
f d vol (3.2.2)

for any x 2 M , provided that f is continuous.
The following theorem provides re�nes the convergence in (3.2.2) by providing a
precise asymptotic expansion. Recall the de�nition of the Casimir operator and of
the vector �eld V from Sections??, 2.2.1 and 2.2.2.

Theorem 3.2.1 (cf. [175, Thm. 1]). Let f 2 C 2(M ) be an eigenfunction of the
Casimir operator with eigenvalue� 2 R.

(i) If � > 1=4, there exist two Hölder-continuous functionsD +
� f , D �

� f : M ! C
with

kD �
� f k1 �

� 11
= �

+ 1
�

kf kC2

such that, for everyx 2 M and t � 1, we have

Z t

0
f � hs(x) ds = t

1
2 cos

 
= �
2

logt

!

D +
� f (� X

log t (x))

+ t
1
2 sin

 
= �
2

logt

!

D �
� f (� X

log t (x)) + R � f (x; t ) ;

3A smooth conjugacy between two smooth �ows(ht )t 2 R and (h0
t )t 2 R on a compact manifold

N is de�ned as a smooth di�eomorphism F : N ! N such that h0
t � F = F � ht for any t 2 R.

When such a map exists, the two �ows share the same ergodic-theoretic and topological dynamical
properties.
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where the remainder termR � f (x; t ) satis�es

jR � f (x; t )j �
16
= �

kf kC2 :

(ii) If � = 1=4, there exist two Hölder-continuous functionsD +
1=4f D �

1=4f : M ! C
with

kD �
1=4f k1 � 9kf kC2

such that, for everyx 2 M and t � 1, we have
Z t

0
f � hs(x) ds = t

1
2 D +

1=4f (� X
log t (x)) + t

1
2 logt D �

1=4f (� X
log t (x)) + R 1=4f (x; t ) ;

where the remainder termR 1=4f (x; t ) satis�es

jR 1=4f (x; t )j � 8kf kC2 (8 logt + 2) :

(iii) If 0 < � < 1=4, there exist two Hölder-continuous functions
D +

� f , D �
� f : M ! C with

kD �
� f k1 �

6
� (1 � � )

kf kC2

such that, for everyx 2 M and t � 1, we have
Z t

0
f � hs(x) ds = t

1� �
2 D +

� f (� X
log t (x)) + t

1+ �
2 D �

� f (� X
log t (x)) + R � f (x; t ) ;

where the remainder termR � f (x; t ) satis�es

jR � f (x; t )j �
8

(1 � � 2)�
kf kC2 :

(iv) If � = 0, we have

Z t

0
f � hs(x) ds = t

Z

M
f d vol +

Z log t

0

�
V f � � X

� � ht (x) � V f � � X
� (x)

�
d�

+ R 0f (x; t )

for every x 2 M and t � 1, where the remainder termR 0f (x; t ) satis�es

jR 0f (x; t )j � 3kf kC2 :

(v) If � < 0, we have �
�
�
�
�

Z t

0
f � hs(x) ds

�
�
�
�
�
� 5kf kC2

for every x 2 M and t � 1.
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As already observed, Theorem 3.2.1 bears a lot of resemblance to Theorem 2.1.6 both
in the statement and in the proof. The partial di�erential equation
(� X 2 + X � UV)f = �f satis�ed by f (cf. the proof of Proposition 2.3.2) re-
sults in a linear ordinary di�erential equation for a an appropriate time-rescaling of
the horocycle ergodic averages

1
t

Z t

0
f � hs(x) ds ;

remarkably, the homogeneous part of this ODE and of the ODE in (2.3.1) match
(compare Proposition 2.3.2 with [175, Prop. 8]), which account for the similar-
looking nature of the asymptotic expansions in Theorems 3.2.1 and 2.1.6.

3.3 The temporal limit theorem for horocycle er-
godic integrals

Let us �x a continuous function f : M ! R. For a given base pointx 2 M , we
would like to capture the oscillatory behaviour of the horocycle ergodic integrals

I f (x; t ) =
Z t

0
f � hs(x) ds ; t > 0

in probabilistic terms. Speci�cally, we are interested in the statistical distribution
of suitable normalizations of theI f (x; t ) as the time t is chosen randomly in a
certain compact window[0; T], T 2 R> 0. As we shall presently show, those distri-
butions converge, in the limit asT tends to in�nity and under certain assumptions
on the function f , to a non-degenerate Gaussian distribution, in the spirit of the
classical central limit theorem for sums of independent random variables (see e.g.
[106, Chap. 15]).
For any � 2 R, we denote byN (0; � 2) the Gaussian probability distribution on R
with mean 0 and variance� 2; recall that is de�ned via absolutely continuous density
as

N (0; � 2)([a; b]) =
1

p
2�� 2

Z b

a
e� u2=2� 2

du ; a; b2 R; a < b:

Furthermore, for any T 2 R> 0, we indicate with U[0;T ] the uniform probability
measure on the compact interval[0; T]. If � is a Borel probability measure onM ,
the notation y � � signi�es that the point y 2 M is selected randomly onM
according to the law� ; similarly for t � U [0;T ].
Let s > 3=2 be a real number andf a function in the Sobolev spaceW s(M ) (see
Sections 2.2.2 and 2.2.3), identi�ed here and henceforth with its unique continuous
representative. We adhere with the notation introduced in Section 2.5.2 and thus,
for any Casimir eigenvalue� , we denote byf � the orthogonal projection off onto
the closed subpaceW s(H � ).
In the appendix to [175] we provide an alternative proof of the following result,
originally due to Dolgopyat and Sarig (see [41, Thm. 5.1 and Cor. 5.6]).
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Theorem 3.3.1 (cf. [175, Thm. 20]). Let s > 11=2 be a positive real number,
f a real-valued function in W s(M ) satisfying

R
M f d vol = 0. Assume that all

componentsf � of f corresponding to Casimir eigenvalues� > 0 are measurable
coboundaries for(ht )t2 R. If f is not a measurable coboundary for(ht )t2 R, then there
exists a real number� > 0 such that, for everyx 2 M , the random variables

I f (x; t ) +
Rlog T

0 V f0 � � X
s (x) ds

p
logT

; t � U [0;T ]; T > 0 (3.3.1)

converge in distribution, asT ! 1 , to a random variable of lawN (0; � 2).

For the notion of measurable coboundary, the reader is referred to Section 2.6.2.
The proof of Theorem 3.3.1, which is inspired by the proof of [41, Thm. 5.1], com-
bines the asymptotic expansion of horocycle ergodic integrals provided by Theo-
rem 3.2.1 together with the central limit theorem for ergodic integrals along geodesic
orbits proven by Ratner in [164]. Before delving into the technicalities of the argu-
ment, we present some observations regarding the result.

Remark 3.3.2. (a) Adopting the terminology introduced by Dolgopyat and Sarig
in [41] (see in particular [41, Def. 1.3]), Theorem 3.3.1 implies in particular
that the horocycle ergodic integrals of any functionf ful�lling the assumptions
satisfy a temporal distributional limit theorem on any horocycle orbit. This
is to say that there exist a collection(AT (x))T > 0 of real numbers possibly
depending on the pointx, a collection (BT )T > 0 of positive real numbers with
BT ! 1 as T ! 1 and a real-valued random variableY, both of which
independent ofx, such that the random variables

I f (x; t ) � AT (x)
BT

; t � U [0;T ]; T > 0

converge in distribution to Y, as T tends to in�nity, for any x 2 M .

(b) As pointed out in [41, Sec. 5.1] in the context of horocycle windings, the
distributional convergence of the random variables in (3.3.1) shows that the
horocycle ergodic integrals of a functionf , despite converging uniformly to
zero (that is, to the space average off ) when renormalized by the linear time
factor T, might exhibit a bias of logarithmic size (coming from the recentering
constants

Rlog T
0 V f0 � � X

s (x) ds) on a logarithmic scale (given by the rescaling
factor (log T)� 1=2).

(c) When there exists at least one positive Casimir eigenvalue� for which f �

is not a measurable coboundary for the horocycle �ow, then the temporal
distributional limit theorem fails on a set of initial conditions of positive volume
measure: see [41, Cor. 5.7].

(d) The original argument of Dolgopyat and Sarig di�ers substantially from our
approach, in that it resorts to the deep classi�cation results of Flaminio and
Forni [63] for horocycle-invariant distributions. The distributional convergence
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is �rst proven for ergodic integrals describing horocycle windings of harmonic
1-forms (see [41, Thm. 5.1]); in this case a simple application of Stokes' theo-
rem translates the problem to the distributional properties of geodesic ergodic
integrals starting at random initial points. A thickening argument of the same
sort we have recourse to in our proof, combined with compactness ofM , al-
lows to establish convergence towards a Gaussian random variable in view of
Ratner's results [164]. The result is subsequently upgraded to the general case
exploiting the highly non-trivial fact that the latter di�ers from the special
case of windings of1-forms only by coboundaries for the horocycle �ow, which
do not alter the distributional convergence (see [41, Thm. 5.5(a) and Cor. 5.6]).

(e) While Theorem 3.3.1 shows that the framework of temporal distributional
limit theorems captures the oscillatory behaviour of horocycle ergodic integrals
in a meaningful manner for a broad class of functions, the same does not
carry over to ergodic integrals along the geodesic �ow(� X

t )t2 R on M . As
a matter of fact, the picture is rather opposite. Denker and Philipp proved
in [38] that geodesic ergodic integrals (more generally, argodic integrals along
su�ciently regular transitive Anosov �ows) satisfy the Almost Sure Invariance
Principle (see Section 2.6.3); loosely speaking, this means that they are closely
approximated by trajectories of a Brownian motion, to an extent that the well-
known failure of any temporal limit theorem for the latter readily transfers to
the former. In this regard, see the second footnote to Section 2.6.3 and the
reference therein.

We are now ready to give the proof of Theorem 3.3.1, which will occupy the remain-
der of the present section.
We begin by recalling the well-known commutation relation between the geodesic
and the horocycle �ow, which follows from elementary matrix computations.

Lemma 3.3.3. For any t; s 2 R, it holds that

� X
t � hs = hse� t � � X

t : (3.3.2)

We shall make repeated use of (3.3.2) over the course of the proof.
We now �x a function f 2 W s(M ), with s > 11=2 a real number, ful�lling the
assumptions of Theorem 3.3.1. The upcoming lemma gives the asymptotic expansion
for the ergodic integralsI f (x; t ) of f (the precise asymptotics for an arbitraryf is
given in [175, Thm. 2]).

Lemma 3.3.4 (cf. [175, Lem. 18]). There exists a constantCM > 0 depending only
on M such that the following is true: iff is as in Theorem 3.3.1, then

I f (x; t ) =
Z log t

0
V f0 � � X

s � ht (x) � V f0 � � X
s (x) ds + E(x; t ) (3.3.3)

for any x 2 M and t � 1, where

jE(x; t )j � CM kf kW s :
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Proof. Arguing as in Section 2.5.2, we decompose the functionf into its components
inside the various Casimir eigenspaces, and apply to each of those either the assump-
tion or the asymptotic expansion given in Theorem 3.2.1. It so happens that the
condition s > 11=2 is the minimal requirement to ensure that, iff =

P
� 2 Spec(� ) f � is

the orthogonal splitting of f into Casimir eigenfunctions, then the ergodic integral
I f (x; t ) can be equally decomposed as

I f (x; t ) =
X

� 2 Spec(� )

Z t

0
f � � hs(x) ds (3.3.4)

for any x 2 M and t � 1; the proof of this fact runs along the same lines as the
proof of Theorem 2.1.8, to which we thus refer.
Let us now examine the contributions of each summand

Rt
0 f � � hs(x)ds,

� 2 Spec(� ) separately. For positive Casimir eigenvalues� , the componentsf �

are measurable coboundaries for the horocycle �ow by assumption. From the work
of Flaminio and Forni [63] on the cohomological equation for horocycle �ows, it
follows that they are actually continuous coboundaries, which in turn implies that
that the ergodic integrals off � are uniformly bounded in t. The same considera-
tion applies to negative Casimir eigenvalues, by virtue of Theorem 3.2.1(v). As a
consequence, we obtain from (3.3.4) that

I f (x; t ) =
Z t

0
f 0 � hs(x) ds + ~E(x; t )

for every x 2 M and t � 1, where ~E(x; t ) is uniformly bounded inx and t in terms
of the Sobolev normkf kW s . Theorem 3.2.1(iv) then delivers the conclusion, setting

E(x; t ) = ~E(x; t ) + R 0f 0(x; t ) ; x 2 M; t � 1

and taking into account that
R

M f d vol = 0.
We refer to [175] for the missing details, in particular for the summability of the
uniform bounds on the ergodic integrals of the components for eigenvalue� 6= 0.

As the remainder termE(x; t ) in Lemma 3.3.4 is uniformly bounded int, the dis-
tributional limits, as T tends to in�nity, of the collection of random variables

I f (x; t ) +
Rlog T

0 V f0 � � X
s (x) ds

p
logT

; t � U [0;T ];

coincide with the distributional limits of
Rlog t

0 V f0 � � X
s � ht (x) � V f0 � � X

s (x) ds +
Rlog T

0 V f0 � � X
s (x) ds

p
logT

; t � U [0;T ]:

Observe that the dependence ont of the integral in (3.3.3) occurs both in the starting
point ht (x) of one of the two geodesic orbits involved and in the upper boundlogt of
the domain of integration. The following lemma provides a �rst reduction, in that
it removes the latter dependence.
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Lemma 3.3.5. Let f be as in Theorem 3.3.1. If the random variables
Rlog T

0 V f0 � � X
s � ht (x) � V f0 � � X

s (x) ds +
Rlog T

0 V f0 � � X
s (x) ds

p
logT

; t � U [0;T ];

converge in distribution towards a random variable with lawN (0; � 2) as T ! 1 ,
then the same holds for the random variables in(3.3.1).

Proof. Owing to the considerations above, it is enough to show that the quantity
�
�
�
�
�

Z log T

0
V f0 � � X

s � ht (x) � V f0 � � X
s (x) ds

�
Z log t

0
V f0 � � X

s � ht (x) � V f0 � � X
s (x) ds

�
�
�
�
�

is uniformly bounded in t. By means of a change of variable, we may rewrite the
last expression as

�
�
�
�
�

Z log (T=t)

0
V f0 � � X

s+log t � ht (x) � V f0 � � X
s+log t (x) ds

�
�
�
�
�
;

which is equal, by the commutation relation (3.3.2), to
�
�
�
�
�

Z log (T=t)

0

�
V f0 � he� s � V f0

�
� � X

s+log t (x) ds

�
�
�
�
�
:

The expression above is dominated by
Z log (T=t)

0
kV f0 � he� s � V f0k1 ds �

Z 1

0
e� s kUV f0k1 ds = kUV f0k1 ;

the �rst inequality following from the mean value theorem. The proof is concluded.

We are thus left with the study of the distributional limit, as T tends to in�nity, of
the random variables

t 7!
Rlog T

0 V f0 � � X
s � ht (x) ds

p
logT

; t � U [0;T ]; T > 0:

For later convenience, we shall interpret the integral in the numerator as an ergodic
integral along the backward geodesic orbit of� X

log T � ht (x) = ht=T � � X
log T (x), namely

we write
Z log T

0
V f0 � � X

s � ht (x) ds =
Z 0

� log T
V f0 � � X

s (ht=T (� X
log T (x))) ds:

From now on, the proof is a detailed articulation of the argument outlined in the
proof of [41, Thm. 5.1]. Ratner's central limit theorem [164] gives that there exists
a real number� � 0 such that the random variables

R0
� log T V f0 � � X

s (y) ds
p

logT
; y � vol; T > 0 (3.3.5)
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converge in distribution, asT tends to in�nity, to a random variable with law
N (0; � 2). Furthermore, it crucially holds that � > 0 provided that V f0 is not a
measurable coboundary4 for (� X

t )t2 R. We shall now prove that this is indeed the
case, because of the assumptions onf .

Lemma 3.3.6 (cf. [175, Lem. 18]). Let f be as in Theorem 3.3.1. Iff is not a
measurable coboundary for the horocycle �ow(ht )t2 R, then V f0 is not a measurable
coboundary for the geodesic �ow(� X

t )t2 R.

Proof. Suppose thatV f0 is a measurable coboundary for(� X
t )t2 R. By the celebrated

results of Livsic on the cohomological equation for hyperbolic systems (see [129]), we
deduce thatV f0 is actually a continuous coboundary. Due to the asymptotic expan-
sion in (3.3.3), this implies that the horocycle ergodic integrals off are uniformly
bounded int for every starting point x 2 M . As M is compact, the horocycle �ow is
minimal; Gottschalk-Hedlund's theorem (cf. [74]) then yields thatf is a continuous,
hencea fortiori measurable, coboundary for(ht )t2 R.

Let us now �x the strictly positive value of � (explicitly computable as shown in
[164, Thm. 3.1]) corresponding to the variance of the limiting distribution of the
random variables in (3.3.5). A theorem of Eagleson (see [47]) ensures that the
very same convergence in distribution takes place ify is sampled according to any
probability measure which is absolutely continuous with respect to the uniform
measurevol. However, in our case the distribution of the pointy = ht=T (� X

log T (x))
from which the relevant geodesic orbit starts is given by the uniform probability
measure� log T on the unit-length horocycle arc

 log T = f ht=T (� X
log T (x)) : 0 � t � Tg ; (3.3.6)

in particular � log T is singular with respect tovol. The remaining part of the argu-
ment is devoted to explicate how it is possible to replace� log T by an appropriate
thickening, which is absolutely continuous with respect tovol, without altering the
distributional limit.

For ease of reading, we adopt the notation

I �
V f 0

(y; T) =
Z 0

� T
V f0 � � X

s (y) ds ; y 2 M; T > 0:

Proposition 3.3.7. Let f be as in Theorem 3.3.1. For any strictly increasing
sequence(Tn )n2 N of positive real numbers, there exists a subsequence(Tnk )k2 N such
that the random variables

I �
V f 0

(y; logTnk )
q

logTnk

y � � log Tn k
; k 2 N

converge in distribution, ask ! 1 , to a random variable with lawN (0; � 2).

4The precise condition to impose is thatV f 0 is not cohomologous to a constant function for the
geodesic �ow; as we assume thatf has zero average, this is equivalent to not being a coboundary.
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By virtue of Lemma 3.3.5, Theorem 3.3.1 follows at once from Proposition 3.3.7, to
the proof of which we now turn.

Proof of Proposition 3.3.7. We �x a Riemannian metric on M , giving rise to a Rie-
mannian distance functiond. The family of functions, de�ned on the unit interval
[0; 1] with values in the compact metric space(M; d), given by the parametrizations
u 7! hu(� X

log T (x)) for every realT > 0, satis�es the following properties:

ˆ it is pointwise bounded by compactness of(M; d);

ˆ it is equicontinuous with respect to the standard Euclidean metric on[0; 1] and
the metric d on M . In fact, the horocycle �ow gives a unit-speed parametriza-
tion of horocycles on the hyperbolic planeH (cf. [6, Chap. 4, Ÿ1]); as a conse-
quence, all the functions we are considering would be1-Lipschitz with respect
to a judiciously chosen Riemannian distance function5 on M . As all Rieman-
nian metrics on M are equivalent (cf. [116, Lem. 13.28]), our collection is
equi-Lipschitz with respect to our arbitrarily chosend.

Let now (Tn )n2 N be a strictly increasing sequence of positive real numbers. By virtue
of Ascoli-Arzelà's theorem (cf. [180, Chap. XX]), there is a subsequence(Tnk )k2 N and
a point x � in the forward geodesic orbit ofx such that

sup
0� u� 1

d(hu(� X
log Tn k

(x)) ; hu(x � )) k!1�! 0 ;

in other words, the horocycle arcs log Tn k
(cf. (3.3.6)) converge uniformly to the

unit-length horocycle arc

� = f hu(x � ) : 0 � u � 1g :

We now thicken the arc� in the complementary directions of the geodesic and the
unstable horocycle �ow, so as to obtain a parallelepiped (compact, with non-empty
interior)

P = f hu
r � � X

s (y) : � 1=2 � r; s � 1=2; y 2 � g ; (3.3.7)

and denote by�� the restriction of the measurevol to P, normalized to be a prob-
ability measure. Notice that �� is obviously absolutely continuous with respect to
vol.
We claim that the distribution of

I �
V f 0

(z; logTnk )
q

logTnk

; z � � log Tn k

is uniformly close, for allk su�ciently large and in the topology of weak convergence
for Borel probability measures onR, to the distribution of the same random variable

5Speci�cally, the one arising from the so-called Sasaki metric (cf. [178]) onM identi�ed with
the unit tangent bundle of the hyperbolic surface S = � nH.
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when z is sampled according to�� . In light of the already mentioned Eagleson's
theorem, this achieves the proof of the proposition.
We now prove the claim just made. Let us �x a bounded Lipschitz-continuous
function6 ' : R ! R; for any k 2 N, we aim to show that

�
�
�
�
�

Z

M
' � (log Tnk )� 1=2I �

V f 0
(�; logTnk ) d� log Tn k

�
Z

R
' dN (0; � 2)

�
�
�
�
�

k!1�! 0 : (3.3.8)

For notational simplicity, we let  k : M ! R denote the function

y 7! (log Tnk )� 1=2I �
V f 0

(y; logTnk )

for any k 2 N. By the triangle inequality, we can bound the quantity in (3.3.8) from
the above by

�
�
�
�
�

Z

M
' �  k d� log Tn k

�
Z

M
' �  k d��

�
�
�
�
�
+

�
�
�
�
�

Z

M
' �  k d�� �

Z

R
' dN (0; � 2)

�
�
�
�
�
;

where we already argued that the second term of the latter sum is in�nitesimal ask
tends to in�nity. We may thus focus on the �rst term. Consider the thickening Pk

of  log Tk
, de�ned as in (3.3.7) with the appropriate modi�cations, and let �� k be the

normalized restriction the measurevol to Pk . We estimate, again via the triangle
inequality,

�
�
�
�
�

Z

M
' �  k d� log Tn k

�
Z

M
' �  k d��

�
�
�
�
�
�

�
�
�
�
�

Z

M
' �  k d� log Tn k

�
Z

M
' �  k d�� k

�
�
�
�
�

+

�
�
�
�
�

Z

M
' �  k d�� k �

Z

M
' �  k d��

�
�
�
�
�
:

Since there are constantsCX;d ; CV;d > 0 such that

d(� X
s (y); � X

s (y0)) � CX;d ejsjd(y; y0) ; d(hu
r (y); hu

r (y)0) � CV;d(1 + jr j + r 2)d(y; y0)

for any y; y0 2 M and any s; r 2 R (see Lemma 2.4.5, the computations for the
unstable horocycle �ow are entirely analogous and therefore omitted), it follows
easily that the Pk converge toP in the Hausdor� distance7, since so do the arcs
 log Tn k

towards � . This implies that
�
�
�
�
�

Z

M
' �  k d�� k �

Z

M
' �  k d��

�
�
�
�
�
=

1
vol P

�
�
�
�
�
vol P
vol Pk

Z

Pk

' �  k d vol �
Z

P
' �  k d vol

�
�
�
�
�

=
1

vol P

�
�
�
�
�

 
vol P
vol Pk

� 1

! Z

Pk

' �  k d vol +
Z

Pk

' �  k d vol �
Z

P
' �  k d vol

�
�
�
�
�

�
k' k1

vol P

  
vol P
vol Pk

� 1

!

+ vol( Pk 4 P)

!
k!1�! 0

6Recall that the topology of weak convergence of probability measures onR can be equivalently
characterized in terms of convergence of averages of bounded Lipschitz-continuous functions (cf. [18,
Chap. 1 Sec. 2]).

7Recall that the Hausdor� distance between two non-empty compact subsetsC; K � M is
de�ned as

dH (C; K ) := inf f " > 0 : C � K " and K � C" g ;

where A " denotes the closed"-neighborhood of a setA � M with respect to the metric d.
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wherek' k1 is the supremum norm of' on R.
In order to show that the di�erence

�
�
�
�
�

Z

M
' �  k d� log Tn k

�
Z

M
' �  k d�� k

�
�
�
�
�

is in�nitesimal as well, we start by applying Fubini's theorem:

Z

M
' �  k d�� k =

Z 1=2

� 1=2

Z 1=2

� 1=2

Z 1

0
' �  k(hu

r (� X
s (hu(� X

log Tn k
x)))) du dr ds: (3.3.9)

Secondly, we compare the quantities
Z

M
' �  k d� log Tn k

=
Z 1

0
' �  k(hu(� X

log Tn k
(x))) du

and Z 1

0
' �  k(hu

r (� X
s (hu(� X

log Tn k
(x))))) du

for each �xed r; s 2 (� 1=2; 1=2). To avoid overburdening notation, we abbreviate
with pu or with p(k)

u the point hu(� X
log Tn k

(x)) , for any u 2 [0; 1] and any k 2 N. We
have, for anyu 2 [0; 1],

j k(hu
r (� X

s (pu))) �  k(pu)j = j k(� X
s (hu

re � s (pu))) �  k(pu)j

= (log Tnk )� 1=2

�
�
�
�
�

Z 0

� log Tn k

V f0 � � X
t+ s(h

u
re � s (pu)) dt �

Z 0

� log Tn k

V f0 � � X
t (pu) dt

�
�
�
�
�

� (log Tnk )� 1=2

 �
�
�
�
�

Z 0

� log Tn k

V f0 � � X
t+ s(h

u
re � s (pu)) dt

�
Z 0

� log Tn k

V f0 � � X
t (hu

re � s (pu)) dt

�
�
�
�
�

+

�
�
�
�
�

Z 0

� log Tn k

V f0 � � X
t (hu

re � s (pu)) dt �
Z 0

� log Tn k

V f0 � � X
t (pu) dt

�
�
�
�
�

!

:

For the �rst addend inside the parentheses above, we estimate
�
�
�
�
�

Z 0

� log Tn k

V f0 � � X
t+ s(h

u
re � s (pu)) dt �

Z 0

� log Tn k

V f0 � � X
t (hu

re � s (pu)) dt

�
�
�
�
�

=

�
�
�
�
�

Z s

0
V f0 � � X

t+ s(h
u
re � s (pu)) dt �

Z � log Tn k + s

� log Tn k

V f0 � � X
t (hu

re � s (pu)) dt

�
�
�
�
�

� 2jsj kV f0k1 � k V f0k1 :

(3.3.10)

As to the second addend, we exploit the fact that backward geodesic orbits of points
lying on the same unstable horocycle orbit get exponentially close to each other,
which yields

d(� X
t (hu

re � s (pu)) ; � X
t (pu)) � CX;d etd(hu

re � s (pu); pu) � CX;d C0
V;de

t

p
e

2
;



114 3.3. The temporal limit theorem for horocycle ergodic integrals

for any t � 0, with C0
V;d being the Lipschitz constant of the parametrization of the

unstable horocycle �ow onM with respect tod, and where the last inequality follows
from the fact that r; s 2 (� 1=2; 1=2). We thus obtain a bound

�
�
�
�
�

Z 0

� log Tn k

V f0 � � X
t (hu

re � s (pu)) dt�
Z 0

� log Tn k

V f0 � � X
t (pu) dt

�
�
�
�
�

� CX;d C0
V;d

p
e

2
Lip(V f0)

Z 0

� log Tn k

et dt

� CX;d C0
V;d

p
e

2
Lip(V f0):

(3.3.11)

Combining the upper bounds in (3.3.10) and (3.3.11) delivers

j k(hu
r (� X

s (pu))) �  k(pu)j � (log Tnk )� 1=2

 

kV f0k1 + CX;d C0
V;d

p
e

2
Lip(V f0)

!

for any u 2 [0; 1] and any r; s 2 [� 1=2; 1=2]. Integrating over u we get
�
�
�
�
�

Z 1

0
' �  k(p(k)

u ) du �
Z 1

0
' �  k(hu

r (� X
s (p(k)

u ))) du

�
�
�
�
�
�

�
Lip(' )

q
logTnk

 

kV f0k1 + CX;d C0
V;d

p
e

2
Lip(V f0)

!

;

where Lip(' ) is the Lipschitz constant of' with respect to the Euclidean metric on
R. Finally, using (3.3.9) and integrating overr and s, we conclude that

�
�
�
�
�

Z

M
' �  k d� log Tn k

�
Z

M
' �  k d�� k

�
�
�
�
�

�

�
�
�
�
�

Z 1=2

� 1=2

Z 1=2

� 1=2

Lip(' )
q

logTnk

 

kV f0k1 + CX;d C0
V;d

p
e

2
Lip(V f0)

!

dr ds

�
�
�
�
�

=
Lip(' )

q
logTnk

 

kV f0k1 + CX;d C0
V;d

p
e

2
Lip(V f0)

!
k!1�! 0:

This concludes the proof of Proposition 3.3.7, and thereby of Theorem 3.3.1.



Chapter 4

Large deviations for random walks
on discrete groups

This chapter merges and gives a uni�ed treatment of the results obtained by the
author in the two articles [32] and [33], pertaining to the large deviation theory
of random walks arising from actions of discrete groups on metric spaces. With
respect to the contents of [32] and [33], we make here only minor adjustments and
supplementary comments.

4.1 Introduction and main results

The study of random walks on algebraic and geometric structures, most notably
graphs and groups, has attracted considerable attention over the last four decades.
Initiated by Polya's epoch-making investigations [159] on recurrence and transience
of symmetric simple random walks on integer lattices, the subject rose to prominence
in the sixties, starting with Kesten's foundational work in the context of countable
discrete groups [102]. It was later repopularised, mainly owing to pioneering con-
tributions due to Kaimanovich, R. Lyons, Varopoulos, Vershik, to name but a few;
several research directions gradually emerged, alongside new connections with var-
ious branches of pure and applied mathematics. For further details, we refer the
reader to Woess' monograph [212] and the extensive bibliography therein.
In this chapter, we con�ne ourselves to the study of random walks arising from
various classes of isometric actions of discrete groups on geodesic metric spaces, and
speci�cally to the investigation of the asymptotic properties of the distribution of
the renormalized distance from the origin. Prior to stating our main results, we
provide a brief overview of the context within which they can be inscribed.
Let G be a �nitely generated group, endowed with the discrete topology, and con-
sider a Borel probability measure� on G. The measure� de�nes a right random
walk (Yn )n2 N started at Y0 = e, the identity element of G, given by Yn = X 1 � � � X n

for every integer n � 1, where the X n 's are independentG-valued random vari-
ables, de�ned on a common probability space(
 ; F ; P) and identically distributed
according to � (see Section 4.2 for precise de�nitions). We say that the increments

115
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of the random walk (Yn )n2 N are distributed according to� . Select a subsetS � G
generating the groupG. The latter determines a length function` on G, measuring
the size of its elements with respect toS; more precisely, for everyg 2 G, `(g) is
de�ned as the minimal number of elements from the setS [ S� 1 which are needed
to obtain g by multiplying them together. This corresponds to the graph distance
from the identity on the Cayley graph ofG with respect to the generating setS.
The following well-known result provides an analogue, in a possibly non-commutative
setting, of the classical strong law of large numbers for sums of independent real
random variables (cf. [106, Chap. 5]). The notion of length function on a group is
recalled in Section 4.2.1.

Theorem 4.1.1. Let G be a �nitely generated discrete group,̀ a length function
on G. Suppose that� is a Borel probability measure onG having �nite �rst moment
with respect to`, that is, for which the average

R
G `(g) d� (g) is �nite. Let (Yn )n2 N be

a right random walk onG with increments distributed according to� . Then, there
exists a non-negative real number� such that

lim
n!1

1
n

`(Yn ) = � P-almost surely:

Theorem 4.1.1 is nowadays regarded as being among the most striking consequences
of Kingman's subadditive ergodic theorem [103, Thm. 5]; for a proof of Theo-
rem 4.1.1, we refer to the original article of Guivarc'h [79].
The constant � appearing in Theorem 4.1.1 is called the escape rate (also speed or
drift) of the random walk; it clearly depends on� and on the length function`.
Once almost-sure convergence of the sequence

�
1
n `(Yn )

�

n� 1
of renormalized lengths

is established, it is natural to enquire about the asymptotic behaviour of the de-
viations (`(Yn ) � n� )n� 1 from the mean. In this spirit, a central limit theorem
was �rst established by Sawyer and Steger in [179] for the case of free groups; a
second, more geometric proof of the same result was later provided by Ledrappier
in [115]. Subsequently, Bjorklund [19] transposed Ledrappier's argument to the set-
ting of Gromov-hyperbolic groups (cf. [78, 72]), proving a central limit theorem for
the Green metric on the groupG. The rationale behind the introduction of such a
metric is of geometric nature: with respect to the Green metric, the horofunction
boundary ofG is G-equivariantly homeomorphic to the Gromov boundary, a techni-
cal assumption which is instrumental in Bjorklund's approach. Thereafter, Benoist
and Quint [13] extended the result to distance functions de�ned by word lengths
(see Section 4.2.1), by adapting the method they introduced earlier in [12] for the
analogous problem on linear groups.

Theorem 4.1.2 ([13, Thm. 1.1]). Let G be a Gromov-hyperbolic group,̀ a word
length on G. Suppose that� is a non-elementary and non-arithmetic probabil-
ity measure onG with �nite second moment with respect tò , that is, such that
R

G `(g)2 d� (g) is �nite. Then the sequence of renormalized random variables

1
p

n
(`(Yn ) � n� ) ; n � 1

converges in distribution to a non-degenerate Gaussian law.
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For an explanation of the assumptions on the measure� appearing in Theorem 4.1.2,
we refer the reader to [13]. It is worth noticing that all earlier works on the central
limit theorem in this context rely on the stronger assumption of �niteness of some
exponential moment for� .
The recent work of Mathieu and Sisto [144], in which an analogue of Theorem 4.1.2 is
established for the yet broader class of acylindrically hyperbolic groups, also deserves
mention.
Further types of statistical limit theorems have been investigated in the setting of
random walks on discrete groups: by way of example, the reader is referred to the
work of Dussaule in [44, 45] on local limit theorems.

In light of Theorem 4.1.1, it is clear that the deviation probabilities

P(j`(Yn ) � n� j � �n ) ; n 2 N (4.1.1)

decay to zero for any� > 0, since almost sure convergence implies convergence in
probability. We are interested in the decay rate of the probability of such rare events.
Properly speaking, we ask whether the sequence of random variables

�
1
n `(Yn )

�

n� 1
satis�es the large deviation principle (see Section 4.3); in loose terms, it amounts to
asking if there is a well-de�ned exponential decay rate for the probability of events
of the type appearing in (4.1.1).
In view of its intrinsically �exible formulation (see De�nition 4.3.1), it is natural
to expect the large deviation principle to hold for a large class of �nitely generated
groups, in particular for Gromov-hyperbolic groups; we shall elaborate on possible
extensions of our approach1 in similar directions in Section 4.7. We observe that
the applicability of the same strategy to such extensions, as well as to analogous
questions in random matrix products, is already mentioned in Sert's thesis [186].

4.1.1 Free products of �nitely generated groups

Our �rst main result establishes the existence of the large deviation principle, with
a proper convex rate function, for the sequence of renormalized word lengths of a
random walk on a non-trivial free products of �nitely generated groups, subject to
a non-degeneracy assumption on the semigroup� generated by the support of the
driving measure� . Speci�cally, we require that � is pattern-avoiding: there exists a
positive integerD > 0 such that, for any reduced word! = y1 � � � yD of type sizeD in
the free product, there is an elementg 2 � nf eg which neither starts with ! nor ends
with ! � 1. For a precise de�nition, we refer to Section 4.2.2, while the relevance of
this condition to the purposes of the proof is explained in Section 4.1.3. For the sake
of illustration, we hasten to observe that the pattern-avoidance condition is ful�lled,

1After the �rst version of our article [32] appeared, Boulanger, Mathieu, Sert and Sisto [21]
proved existence of the large deviation principle for random walks on geodesic hyperbolic spaces,
thus encompassing the case of Gromov-hyperbolic groups. The underpinning strategy does not
di�er substantially from our approach, though it relies on deeper geometric considerations: see
also Remark 4.1.10.
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for instance, if � intersects two distinct factors of the free product non-trivially (see
Example 4.2.4).
Expanding upon the latter observation, we precede the statement of the main result
(Theorem 4.1.4) with a simpler and more concise version which already singles out
a broad class of admissible driving measures.

Proposition 4.1.3 ([32, Prop. 1.3]). Let r � 2 be an integer,G1; : : : ; Gr non-
trivial �nitely generated groups, G = G1 � � � � � Gr their free product equipped with
the discrete topology,Si a �nite generating set ofGi for i = 1; : : : ; r , S the union of
all the Si 's, ` the word length onG determined byS. Let � be a Borel probability
measure onG, and assume its support generates a semigroup� with the property
that, for any i 2 f 1; : : : ; rg, there is an elementg 2 � which neither starts nor ends
in the factor Gi . If (Yn )n� 0 is a right random walk onG issued from the identity
with increments distributed according to� , then the sequence of random variables�

1
n `(Yn )

�

n� 1
satis�es the weak large deviation principle with a convex rate function.

Observe that any semigroup� ful�lling the assumptions of Proposition 4.1.3 avoids
patterns of type sizeD = 1 (the converse clearly fails, as shown in Example 4.2.4).
In order to deal with more general pattern-avoiding semigroups, our method compels
us to impose an additional constraint on the size of the factorsG1; : : : ; Gr .
The complete formulation of our results for free products reads as follows:

Theorem 4.1.4 ([32, Thm. 1.4]). Let r � 2 be an integer,G1; : : : ; Gr non-trivial
�nitely generated groups of subexponential growth,G = G1 �� � �� Gr their free product
equipped with the discrete topology,Si a �nite generating set ofGi for i = 1; : : : ; r ,
S the union of all theSi 's, ` the word length onG determined byS. Suppose that
� is a Borel probability measure onG whose support generates a pattern-avoiding
semigroup, and let(Yn )n� 0 be a right random walk onG issued from the identity
with increments distributed according to� . Then, the following assertions hold.

(1) The sequence of random variables
�

1
n `(Yn )

�

n� 1
satis�es the weak large devia-

tion principle with a convex rate functionI : R� 0 ! [0; 1 ].

(2) If � has a �nite exponential moment, thenI is a proper function and the se-
quence

�
1
n `(Yn )

�

n� 1
satis�es the full large deviation principle with rate function

I .

(3) If � has �nite moment-generating function, thenI is the Fenchel-Legendre
transform of the limiting logarithmic moment generating function of the se-
quence

�
1
n `(Yn )

�

n� 1
.

A close inspection of the proof of Lemma 4.4.2 reveals that the whole argument
leading to Theorem 4.1.4 can be readily adapted to establish Proposition 4.1.3. In
particular, the last two assertions of Theorem 4.1.4 remain valid in the setting of
Proposition 4.1.3.
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For a precise de�nition of all the terms involved in the statement of Theorem 4.1.4,
we refer the reader to Sections 4.2 and 4.3. Let us just recall here that a probability
measure� on G is said to have a �nite exponential moment if

Z

G
e� ` (g) d� (g) < 1 (4.1.2)

for some� 2 R> 0, and that we say it has �nite moment-generating function if (4.1.2)
holds for every� 2 R> 0.
By taking Gi = Z for all i = 1; : : : ; r , we settle in particular the question of exis-
tence of the large deviation principle for random walks on free groups; in turn, this
yields the result for nearest-neighbour random walks on locally �nite regular trees (a
straightfoward adaptation of the proof of Theorem 4.1.4 allows to deal with regular
trees of odd degree as well). For the sake of simplicity, we state the corollary in the
case of utmost interest for applications to (possibly lazy2) simple random walks on
trees.

Corollary 4.1.5 ([32, Cor. 1.5]). Let r � 1 be an integer,G a free group onr
generators equipped with the discrete topology,S a free set of generators,̀ the word
length on G determined byS. Let S� 1 denote the set of inverses of elements in
S. Assume � is a Borel probability measure onG whose support is contained in
S[ S� 1[f eg, and let (Yn )n� 0 be a right random walk onG with increments distributed
according to � . Then, the sequence of random variables

�
1
n `(Yn )

�

n� 1
satis�es the

full large deviation principle with a proper convex rate function, coinciding with the
Fenchel-Legendre transform of the limiting logarithmic moment generating function
of the sequence

�
1
n `(Yn )

�

n� 1
.

Notice that the caser = 1 of Corollary 4.1.5 is not covered in principle by The-
orem 4.1.4; on the other hand, this case is a well-known, elementary instance of
Cramer's theorem (cf. [39, Thm. 2.2.3]) on the deviations of the empirical mean
of independent, identically distributed real-valued random variables. Incidentally,
our method would be readily applicable to this case as well, as we point out in
section 4.7, thus yielding an indirect proof of Cramer's theorem for simple random
walks onZ (and Zd).

Remark 4.1.6. Several remarks about Theorem 4.1.4 and Corollary 4.1.5 are in
order.

1. A version of Grushko's theorem (see the main theorem in [130]) asserts that
every �nitely generated group can be decomposed in an essentially unique
way as a free product of �nitely many �nitely generated subgroups, which are
not further decomposable as non-trivial free products. Notwithstanding this
structural result, the class of examples Theorem 4.1.4 deals with is restricted
because of the limitations imposed on the generating setS, whose peculiar
structure is crucial to our approach (cf. Section 4.1.3).

2A random walk (Yn )n on G is customarily called lazy if � (e) � 1=2; here, for convenience, we
employ the terminology in order to refer to the more general case� (e) > 0.
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On the other hand, the pattern-avoiding assumption on the semigroup� is by
no means necessary for the conclusions of Theorem 4.1.4 to hold; it is only a
convenient manner of identifying a large class of examples to which our method
applies3. Therefore, it stands to reason to expect that a technical re�nement
of our method would allow to weaken the assumption on the support of the
driving measure, and deal with the case in which no conjugate of the semigroup
� lies in a single factor. In this regard, see the proof of Lemma 4.4.2. A similar
result would yield, notably, that existence of the large deviation principle for
word lengths of random walks is stable under taking free products.

2. The result in Corollary 4.1.5 might also be derived, when2r = p + 1 for a
prime numberp, from the large deviation principle for random walks on linear
algebraic groups4 (see [187, Thm. 3.3]), by choosing an appropriate represen-
tation of the free group in the projective special linear group5 PSL2(Qp) over
the �eld Qp of p-adic numbers. Our approach is di�erent in that it resorts to
the intrinsic geometric properties of the free group, rather than appealing to
a representation.

3. Sharp large deviations estimates for the word-length functional of �nite-range
random walks on free groups are already present in the work of Lalley (see6

[109, Thm. 7.2]). The techniques adopted there di�er signi�cantly from ours,
hinging on an extension of the Perron-Frobenius theory of nonnegative ma-
trices to certain inhomogeneous matrix products; they yield �ner information
on the rate function, notably strict convexity, but require the assumption of
aperiodicity of the random walk (cf. the introductory section in [109]), which
our method does not necessitate.

Remark 4.1.7. Our hypothesis on the support of the driving measure� is unre-
lated to the choice of the generating setS. This makes Theorem 4.1.4 applicable,
for instance, to the following circumstance, in which the driving measure hasa
priori no connection with the generating set. LetG be a �nitely generated group,
H < G a �nite-index subgroup (henceH is �nitely generated by Schreier's subgroup
lemma, see [183, Lem. 4.2.1]),S � H a �nite generating set of H , T � G a set of

3It becomes clear from the proofs that the very same method takes care, in addition, of some
cases such assupp� � f (ab)n : n 2 Zg in G = ha; bi a free group on two generators, in which
the semigroup generated bysupp� is not pattern-avoiding. Ruling out such trivial examples, it
doesn't seem unlikely that a failure of the pattern-avoidance condition actually forces a conjugate
of the semigroup� to lie in one of the factors.

4This has been pointed out to the author by C. Sert.
5The rank-one algebraic groupPSL2(Qp) acts by isometries on its Bruhat-Tits tree T , which is

regular of degreep + 1 (for the construction, we refer to Serre's book [184]). Hyperbolic elements
of PSL2(Qp) act on T as hyperbolic elements in the geometric sense (cf. [160, Sec. 6]). Choosing a
base vertexo 2 T , the translation distance from o corresponds, up to a multiplicative factor, to the
operator norm on PSL2(Qp) derived from a choice of aK -invariant ultrametric norm on the local
�eld Qp, where K < PSL2(Qp) is the compact stabilizer ofo. Selecting hyperbolic elements which
generate a Zariski-dense free subgroup ofPSL2(Qp) amounts to de�nining an isometric embedding
of the corresponding free group inPSL2(Qp).

6We thank S. Müller for drawing our attention to this reference.
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representatives of right cosets ofH in G, ~S = f st : s 2 S; t 2 Tg the corresponding
�nite generating set of G. Suppose that ~� is a probability measure onG whose
support is contained ~S [ ~S� 1 [ f eg, thus giving rise to a nearest-neighbour random
walk (Yn )n2 N on the Cayley graph (see Section 4.2.1) Cay(G; ~S) of G with respect to
~S. Let � 1 < � 2 < � � � < � n < � � � be the strictly increasing sequence of stopping times
de�ned by the successive instants in which the random walk visitsH ; they are all
�nite P-almost surely, sinceH has �nite index in G. By an iterative application of
the strong Markov property (cf. [106, Chap. 17]) to the stochastic process(Yn )n2 N,
it follows that the H -valued process(Y� n )n2 N (where we agree thatY� 0 = e) is a
right random walk on H driven by a measure� having �nite moment-generating
function with respect to the word length determined byS; if H is a non-trivial free
product of �nitely generated groups, all conclusions of Theorem 4.1.4 apply.
An example of interest is the arithmetic groupSL2(Z), which contains a multitude
of �nite-index free subgroups (cf. [81, Chap. II]).

4.1.2 Relatively hyperbolic groups and beyond

Our second line of investigation concerning existence of the large deviation principle
addresses chie�y the class of relatively hyperbolic groups, which features promi-
nently in current research in geometric group theory. The notion of a relatively
hyperbolic group was �rst introduced by Gromov in his seminal article [78], in or-
der to encompass various kinds of groups of algebraic and geometric origin, such as
fundamental groups of non-compact �nite-volume Riemannian manifolds of pinched
negative sectional curvature, geometrically �nite Kleinian groups, small cancellation
quotients of free products, hyperbolic groups and so forth. Gromov's intuition was
later elaborated by Bowditch in [23] and, in an alternative form, by Farb in [61].
The di�erent de�nitions of Bowditch and Farb were shown to be inequivalent by
Szczepa«ski in [205]; however, it turns out that Farb's de�nition of relative hyper-
bolicity, in conjunction with the Bounded Coset Penetration property he himself
introduced, amounts precisely to Bowditch's de�nition (see Remark 4.2.6). The
reader is referred to Section 4.2.3 for the necessary background on relatively hyper-
bolic groups.
Let G be a �nitely generated group, hyperbolic relative to a collection� of peripheral
subgroups. Denote bye its identity element. We shall assume thatG is non-
elementary, that is, it does not contain any cyclic subgroup of �nite index. Choose
a �nite set S generating the groupG, and select a �nite set of representatives
f H1; : : : ; Hr g for the conjugacy classes inside the collection� . Let ` be the word
length induced onG by the (typically in�nite) generating set S [

S
1� i � r H i .

Let us call a probability measure� on G admissibleif the random walk (Yn )n� 0 it
generates onG, issued from the identity, is irreducible: for anyg 2 G there exists an
integer n � 1 such that P(Yn = g) > 0. Equivalently, � is admissible if its support
generatesG as a semigroup.
Our main result in the present context establishes existence of the large devia-
tion principle for irreducible random walks on non-elementary relatively hyperbolic
groups. It reads as follows:
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Theorem 4.1.8 ([33, Thm. 1.1]). Let G be a �nitely generated group, hyperbolic rel-
ative to a collection� of peripheral subgroups and equipped with the discrete topology.
AssumeG is non-elementary. LetS � G be a �nite set generatingG, f H1; : : : ; Hr g
a complete set of representatives of the conjugacy classes in� , ` the word length on
G determined by the unionS [

� S
1� i � r H i

�
. Suppose� is an admissible Borel prob-

ability measure onG, and let (Yn )n� 0 be a right random walk onG issued from the
identity with increments distributed according to� . Then the sequence of random
variables

�
1
n `(Yn )

�

n� 1
satis�es the weak large deviation principle with a convex rate

function I : R� 0 ! [0; 1 ].

Just like in Theorem 4.1.4, existence of the weak large deviation principle and con-
vexity of the associated rate function hold irrespective of any moment assumption on
the law � of the increments, as opposed to other asymptotic results such as the law
of large numbers or the central limit theorem (cf. Theorems 4.1.1 and 4.1.2). The
hypothesis placed on the support of� is only of algebraic type. On the other hand,
it will emerge that the arguments leading to the proof of the last two assertions in
Theorem 4.1.4 do not rely on any distinctive feature of the underlying group, but
instead on the classical theory of large deviations. As a consequence, the statements
in Theorem 4.1.4 (2) and (3) carry over to the setup of Theorem 4.1.8. We state
them as a corollary:

Corollary 4.1.9 ([33, Cor. 1.2]). Under the assumptions of Theorem 4.1.8, the
following hold:

(1) if � has a �nite exponential moment, thenI is a proper function and the se-
quence

�
1
n `(Yn )

�

n� 1
satis�es the full large deviation principle with rate function

I ;

(2) if � has �nite moment-generating function, thenI is the Fenchel-Legendre
transform of the limiting logarithmic moment generating function of the se-
quence

�
1
n `(Yn )

�

n� 1
.

In what follows we gather some comments on the result of Theorem 4.1.8.

Remark 4.1.10. (1) As we shall elucidate in Section 4.4.2, the validity of Theo-
rem 4.1.8 merely hinges upon a peculiar geometric property of the word dis-
tance in relatively hyperbolic groups, which is shared by several other classes of
geodesic metric spaces on which a non-elementary discrete group acts by isome-
tries with contracting elements7: in this respect, compare Proposition 4.4.5
with [215, Lem. 2.14]). As a consequence, our main result applies to irre-
ducible random walks in such more general circumstances as well. By way
of example, we mention the following (see the introduction to [215] and the
references therein):

(a) groups acting properly and cocompactly on Gromov-hyperbolic metric
spaces;

7The author wishes to thank W. Yang for drawing his attention to this fact.
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(b) groups acting properly and cocompactly on CAT(0) spaces with rank-one
elements;

(c) relatively hyperbolic groups acting on their Cayley graph with respect to
a �nite generating set;

(d) mapping class groups of closed orientable surfaces of genus at least two
acting on the associated Teichmüller space endowed with the Teichmüller
metric.

The large deviation principle for non-elementary random walks on Gromov-
hyperbolic metric spaces has been previously established by Boulanger, Math-
ieu, Sert and Sisto in [21]. Of the four classes of examples mentioned above,
(b), (c) and (d) are not covered by their result [21, Thm. 1.2]; to the best of
the author's knowledge, the large deviation principle for those appears to be
new.

(2) A corollary of [21, Thm. 1.2] is the large deviation principle for random walks
on the coned-o� Cayley graph of a relatively hyperbolic group (see the ap-
pendix to [154] for the de�nition). As shown in [154, Lem. 6.8], the coned-o�
Cayley graph is only quasi-isometric to the Cayley graph Cay

�
G; S[

S
1� i � r H i

�

we are considering; as a consequence, it is not possible to deduce8 Theo-
rem 4.1.8 directly from [21, Thm. 1.2], nor viceversa.

For Gromov-hyperbolic groups, that is, when the collection� of peripheral
subgroups reduces to the identity subgroup, the two Cayley graphs coincide. In
this case, our approach allows for a disentanglement of the technical intricacies
in the proof of [21, Thm. 1.2]; on the other hand, the latter result yields �ner
information on the rate function, notably uniqueness of the zero.

4.1.3 Outline of the strategy

To illustrate the overarching strategy underpinning our proof of Theorems 4.1.4
and 4.1.8, it is informative to recall the indirect approach, put forward by Lanford
in [110], to the proof of Cramer's theorem for independent identically distributed
real random variables. If(X n )n� 1 is a sequence of i.i.d. real-valued random variables
and Sn =

P n
i =1 X i denotes the sequence of partial sums, then, for everyx 2 R and

" > 0, the limit

lim
n!1

1
n

logP

 
1
n

Sn 2 (x � "; x + ")

!

exists in [�1 ; 0] by supermultiplicativity of the sequence
 

P

 
1
n

Sn 2 (x � "; x + ")

!!

n� 1

;

8It is a matter of simple veri�cation to realize that the large deviation principle for renormalized
distance functions of random walks arising from isometric group actions is only preserved under
equivariant isometries; it may already fail for bi-Lipschitz identi�cations of the metric spaces
involved.
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which is in turn given by additivity of the the process(Sn )n� 1. The weak large
deviation principle now follows from a standard result in large deviations' theory
(see Proposition 4.3.6). In a similar fashion, the weak large deviation principle holds
for any additive functional9 `0 of a random walk(Yn )n2 N on a group.
The major obstacle which emerges when attempting to transport this argument to
our context lies in the defect of additivity of length functions on discrete groups;
subadditivity only ensures supermultiplicativity of the sequenceP( 1

n `(Yn ) 2 I ) for
intervals of the form I = ( �1 ; x), x 2 R. Still, if the random walk can be restricted
to subsets on which the length function is almost additive (see Lemma 4.4.2 and the
terminology introduced thereunder) without sizeable loss in the exponential decay
rate of the corresponding probabilities, then Lanford's approach carries over almost
una�ectedly.
Speci�cally, in the case of free products, the structure of the generating setS, ob-
tained by concatenating generating sets of the various factors, enables us to quantify
neatly the lack of additivity in terms of the reduced-word expansion of the elements
involved; the pattern-avoiding assumption on the semigroup� can then be leveraged
to con�ne the attention to subsets on which the length function isweakly additive,
and which are attained by the random walk with su�ciently high probability on an
exponential scale. This is detailed in Lemma 4.4.2.
As far as relatively hyperbolic groups are concerned, it turns out that random walks
on them possess the feature that successive steps tend to be almost aligned (that
is, the length function is almost additive) with su�ciently high probability on an
exponential scale, in a way which is formally expressed by Lemma 4.4.6; see also the
deviation inequalities proven in [144], which point to the same phenomenon. We
derive this property from a distinctive geometric characteristic of Cayley graphs of
relatively hyperbolic groups, phrased in Proposition 4.4.5.
Both in the case of free products and of relatively hyperbolic groups, we then proceed
as follows: once a uniform lower bound for the loss of additivity is achieved, it is
possible to deduce that, if

 = lim sup
n!1

1
n

logP

 
1
n

`(Yn ) 2 (x � a; x + a)

!

for given x; a 2 R> 0, then the bound

P

 
1
nk

`(Ynk ) 2 (x � a; x + a)

!

� enk ( � � )

(� being an arbitrarily small parameter) holds for a non-lacunary subsequence of
integers (nk)k� 1. The arithmetic nature of such a sequence permits to deduce a
lower bound

lim inf
n!1

1
n

logP

 
1
n

`(Yn ) 2 (x � b; x+ b)

!

�  � � ;

9This means that `0(Yn + m ) = `0(Yn ) + `0(Ym ) P-almost surely for everyn; m � 0.
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at the minor cost of choosingb strictly larger than a; this is the purpose of
Lemma 4.4.1, which in a sense plays the role of the classical Fekete lemma (cf. [133,
Ex. 3.9]) in Lanford's original argument. The actual proof of the weak large devia-
tion principle is then articulated in Proposition 4.4.3 for free products and at the end
of Section 4.4.2 for relatively hyperbolic groups. Convexity of the rate function fol-
lows from entirely analogous arguments, as the proof of Proposition 4.5.1 highlights.
Finally, the remaining properties of the rate function mentioned in Theorem 4.1.4
and Corollary 4.1.9 are inferred from well-known foundational results in the theory
of large deviations (see Proposition 4.3.5, Theorem 4.3.7 and Section 4.6).
As a concluding comment, let us point out that the strategy outlined here parallels
arguments employed by Sert in [187] to deal with large deviations of the Cartan
projection of random matrix products; in this context, a weak form of additivity for
the Cartan projection is satis�ed on(r; " )-Schottky semigroups, as shown by Benoist
in [7]. The restriction of the random walk to such semigroups is then made possible
by a result of Abels-Margulis-Soifer [1], establishing the ubiquity of(r; " )-proximal
elements in Zariski-dense semigroups.

4.1.4 Outline of the chapter

We begin in Section 4.2 with some preliminaries on random walks on �nitely gen-
erated groups, which mainly serve the purposes of �xing notation, demistifying
the nature of the pattern-avoiding assumption we impose on the semigroup� in
Theorem 4.1.4, and reviewing the de�nition of a relatively hyperbolic group. In
Section 4.3 we recall some standard terminology from the theory of large deviations,
together with a few general facts which are employed in the proof of Theorems 4.1.4
and 4.1.8. Sections 4.4 and 4.5 are devoted to the proof our main results; specif-
ically, in Section 4.4 we establish existence of the large deviation principle, while
in Section 4.5 we prove convexity of the rate function. Section 4.6 explores further
properties of the rate function, among which its expression as a Fenchel-Legendre
transform when the exponential moments of the driving measures are �nite, and re-
lates it to relevant quantitites associated to the random walk. Finally, in Section 4.7
we assemble ideas on possible generalizations of Theorems 4.1.4 and 4.1.8, list some
open questions and formulate related conjectures.
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4.2 Generalities on discrete groups and random
walks

We collect in this section the required background on geometric group theory and
random walks, placing special emphasis (in Section 4.2.2) on the notion of pattern
avoidance, which appears among the assumptions in Theorem 4.1.4 and is conse-
quently essential in its proof.

4.2.1 Word length and metric on a �nitely generated group

Convenient sources for the material presented hereunder are [81, 133, 212].
Let G be a �nitely generated group with identity elemente, S � G a (non-empty)
�nite generating set. Let S� 1 = f s� 1 : s 2 Sg denote the set of inverses of the
elements inS, so that

G = f s1 � � � sn : n � 1; si 2 S [ S� 1 for all 1 � i � ng:

We de�ne the word length ` detemined by the generating setS as the function
` : G ! N given by

`(g) = inf f n 2 N : there exist s1; : : : ; sn 2 S [ S� 1 such that g = s1 � � � sng

for every g 2 G, with the understanding that `(e) = 0 . Then ` satis�es the axioms
of a length function, meaning that it has the following properties:

ˆ `(g) 2 R� 0 for all g 2 G and `(g) = 0 if and only if g = e;

ˆ `(g� 1) = `(g) for all g 2 G;

ˆ `(g1g2) � `(g1) + `(g2) for all g1; g2 2 G.

The word length` determines a distance functiond on G, called theword metric asso-
ciated to the generating set S, de�ned by d(g1; g2) = `(g� 1

1 g2) for all
g1; g2 2 G. As follows immediately from its de�nition, the word metric d is invariant
for the action of G on itself by left translation, namelyd(gg1; gg2) = d(g1; g2) for all
g; g1; g2 2 G.
We denote by Cay(G; S) = ( V; E) the Cayley graph ofG with respect to S; we recall
that this is the simple, undirected graph whose vertex setV is the group G, and
where two verticesg1; g2 2 V are connected by an edgee = f g1; g2g 2 E if and only
if d(g1; g2) = 1 . In other words, there is an edge connectingg1 to g2 if and only if
there is s 2 S [ S� 1 n f eg such that g2 = g1s. The graph Cay(G; S) is connected,
transitive and locally �nite of degree the cardinality jS[ S� 1nf egj. The word metric
d on G corresponds, via this identi�cation, to the standard graph distance on the
vertex setV (cf. [133, Chap. 3]).
For any T 2 R� 0, let B G(T) = f g 2 G : `(g) � Tg be the closedd-ball of radius T
centered at the identity; it is a �nite set since so isS. As the sequence of cardinalities
(jB G(n)j)n� 1 is submultiplicative, the limit

 = lim
n!1

jB G(n)j1=n
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exists by the classical Fekete lemma (see [133, Ex. 3.9]). We say thatG hassubexpo-
nential growth if  = 1, a property which is actually independent of the generating
set S. A broad class of �nitely generated groups with subexponential (in fact, poly-
nomial) growth consists of nilpotent10 groups (cf. [213]).

If G = G1�� � �� Gr is the free product (cf. [22]) of �nitely generated groupsG1; : : : ; Gr ,
we shall always restrict our considerations to the following kind of generating sets
(and corresponding word lengths): we �x a generating setSi � Gi for each factor
Gi of the free product, and take the unionS =

S r
i =1 S as generating set forG.

4.2.2 Free products and pattern-avoiding subsets

Let r � 2 be an integer,G1; : : : ; Gr �nitely generated groups not reduced to the
identity, and denote by G = G1 � � � � � Gr the free product of theGi 's. We shall
identify each Gi ; 1 � i � r , with the isomorphic image of its canonical embedding
in G.

Lemma 4.2.1 ([81, Chap. II, Prop. 1]). For any non-trivial element g 2 G,
there exist uniquely determined non-trivial elementsx1 2 Gi 1 ; : : : ; xm 2 Gi m , with
i j 6= i j +1 for all 1 � j � m � 1, such thatg = x1x2 � � � xm .

Any product x1 � � � xm as in Lemma 4.2.1 is referred to as areduced wordof type
size m in the free product; correspondingly, we shall also say thatg = x1 � � � xm is
an element of type sizem. For any i 2 f 1; : : : ; mg, we call the elementx i the i -th
letter of the reduced wordx1 � � � xm .

Remark 4.2.2. Suppose that we �x a generating setSi � Gi for each factorGi

of the free product, and let ` i denote the associated word length onGi . Then,
if ` is the word length determined by the generating setS =

S r
i =1 Si � G and if

g; x1; : : : ; xm are as in Lemma 4.2.1, it holds that̀ (g) = `(x1)+ � � � + `(xm ). Observe
in particular that, while the word lengthof an elementg 2 G depends on the choice
of the generating sets for the factors, thetype sizeof g does not.

Let ! = y1 � � � yd be a reduced word of type sized, g 2 G an element of type size at
least 2, with reduced-word decompositiong = x1 � � � xm . We shall say thatg

ˆ starts with ! if x1 � � � x inf f d;bm=2cg = y1 � � � yinf f d;bm=2cg, and

ˆ ends with! if xm� inf f d;bm=2cg+1 � � � xm = y1 � � � yinf f d;bm=2cg,

wherebac indicates the integer part of a real numbera. Notice that the de�nition
is independent of any choice of generating sets for the factorsG1; : : : ; Gr of the free
product.

10The converse is the content of a celebrated theorem due to Gromov [77]: every �nitely generated
group of polynomial growth is virtually nilpotent, that is, it contains a �nite-index nilpotent
subgroup.
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Example 4.2.3. If G = ha; bi is a free group on two generatorsa and b, then the
element ababstarts with ab and ends with ab, while the elementabab� 1a� 1 starts
with ab and ends withb� 1a� 1. Also, according to our de�nition, the latter element
starts with any word ab! 0 obtained by juxtaposing a reduced word! 0 to ab in such
a way that ab! 0 is again a reduced word.

A subset T � G is called pattern-avoiding if there exists a positive integerD > 0
such that, for any reduced word! = y1 � � � yD of type size D in the free prod-
uct, there existsg 2 T such that g does not start with ! and does not end with
! � 1 = y� 1

D � � � y� 1
1 (in particular, g has type size at least2). In case we need to keep

track of the integer D, we shall say that T avoids patterns of type sizeD. The
examples presented here below shall clarify the notion.

Example 4.2.4. 1. Let G = ha; b; ci be a free group on three generatorsa; band
c. The sets

T1 = f ab; bcg; T2 = f acb; a3bca� 2g; T3 = f aba� 1; bab� 1g

are pattern-avoiding, while the set

T4 = f ab; ac2; ca� 1g

is not pattern-avoiding, as all its elements either start witha or end with a� 1.

2. If a subsetS � G is contained in a conjugategGi g� 1 for somei 2 f 1; : : : ; rg
and someg = x1 � � � xm 2 G, then the semigroup� generated byS is not
pattern-avoiding: all its elements start with x1 � � � xm and end with
(x1 � � � xm )� 1.

3. Consider a subsetS � G intersecting at least two factors non-trivially, namely
suppose there are indicesi 6= j 2 f 1; : : : ; rg such that S \ (Gi n f eg) 6= ; and
S \ (Gj n f eg) 6= ; . Then the semigroup� generated byS is pattern-avoiding:
if x 2 S \ (Gi n f eg) and y 2 S \ (Gj n f eg), then f xy; yxg is pattern-avoiding
and contained in� .

4. The semigroup generated byf aba; a2ba2g in G = ha; bi avoids patterns of type
size1, but does not satisfy the hypotheses of Proposition 4.1.3: its elements
start and end in the factor hai .

Obviously, if T 0 � T � G and T 0 is pattern-avoiding, then so isT . Conversely, the
following elementary observation is essential for our line of reasoning in Section 4.4:
if T is pattern-avoiding, then there exists a �nite subsetT 0 � T which is also
pattern-avoiding11.

11A simple enumeration of all possibilities shows thatT 0 can be chosen with cardinality at most
3.
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4.2.3 Relatively hyperbolic groups

The purpose of this subsection is to review the notion of a relatively hyperbolic
group. Several equivalent de�nitions of a relatively hyperbolic group can be given
(see [23, 61, 154]), of which the most convenient for our purposes is combinatorial in
nature, and was introduced by Farb in [61]. We follow Osin's treatment, as presented
in [44].
Let G be a �nitely generated group and� a collection of subgroups ofG. Assume
that � is closed under conjugation by elements ofG and admits a �nite number of
conjugacy classes. Choose a �nite set� 0 = f H1; : : : ; Hr g � � of representatives of
such conjugacy classes.
Let S � G be a �nite set generatingG, Cay(G; S) the associated Cayley graph.
We shall also consider the Cayley graph Cay

�
G; S [

S
1� i � r H i

�
with respect to

the generating set obtained by adding toS all elements of the subgroupsH i ; this is
sometimes referred to in the literature as therelative Cayley graph ofG with respect
to S and the collection� 0.
It is well-known (see, for instance, [25, Sec. I.1.9]) that any undirected connected
graph can be endowed with the structure of a complete geodesic metric space, for
which all edges in the graph are isometrically isomorphic to the unit interval[0; 1],
endowed with the Euclidean distance. We shall denote by� the metric space asso-
ciated in this way to the graph Cay

�
G; S [

S
1� i � r H i

�
.

Henceforth, we denote byd the graph distance in Cay
�
G; S [

S
1� i � r H i

�
; this is the

distance we shall always consider for the purposes of establishing the large deviation
principle (cf. Proposition 4.4.5). Equipped with this distance, the Cayley graph
embeds isometrically into� . The graph distance in Cay(G; S) will be indicated
with d0 instead.
Recall that a geodesic metric space(X; d) is called hyperbolic if there exists� > 0
such that, for any geodesic triangle inX , each edge is contained in the closed
� -neighborhood of the union of the other two edges (cf. [78, 25, 81]).
We say that the groupG is weakly relatively hyperbolic with respect to the collection
of subgroups� if � is a Gromov-hyperbolic metric space. The de�nition does not
depend neither on the choice of� 0 nor of S.
The de�nition of relative hyperbolicity builds additionally upon the Bounded Coset
Penetration property, which we now address for the sake of completeness, referring
to [154] for its geometric signi�cance12. In what follows, a path in � is a �nite
sequence of adjacent vertices in Cay

�
G; S[

S
1� i � r H i

�
. Given real numbers�; c > 0,

a relative (�; c )-quasi geodesic pathis a path � = (  1; : : : ;  n ) which is a (�; c )-quasi
geodesic, that is, it satis�es

� � 1jk � l j � c � d( k ;  l ) � � jk � l j + c

for any k; l 2 f 1; : : : ; ng. We say that a path � enters the left cosetgHi if it has a

12We just remark here that mapping class groups are weakly relatively hyperbolic, as shown by
Masur and Minsky in [143] through the study of their action on the curve complex of the associated
surface, but do not satisfy the Bounded Coset Penetration property.
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vertex which is an element ofgHi and which is followed by an edge corresponding
to an element ofH i . For such a path, consider a maximal subpath consisting of
vertices in gHi and whose edges are labelled with elements ofH i . We call such a
subpath a H i -component. The entering (resp. exit) point of the H i -component is
the �rst (resp. last) vertex of such a subpath; we say that the subpathleavesgHi at
the exit point. Moreover, given a non-negative integerr , the path is said to travel
more than r in gHi if the distance in Cay(G; S) between the entering and the exit
point is larger than r . Lastly, a path is without backtrackingif it never goes back to
a cosetgHi once it has left it.

By de�nition, the pair (G; �) satis�es the Bounded Coset Penetration property if, for
all �; c > 0, there exists a constantC�;c such that, for every pair(� 1; � 2) of relative
(�; c )-quasi geodesic paths without backtracking and with common end points, the
following hold:

ˆ if � 1 travels more thanC�;c in a cosetgHi , then � 2 entersgHi ;

ˆ if � 1 and � 2 enter the same cosetgHi , then the two entering points and the
two end points areC�;c -close to each other in Cay(G; S).

We can now �nally give the de�nition of relatively hyperbolic group.

De�nition 4.2.5. We say that the groupG is relatively hyperbolic with respect to
the collection of subgroups� if it is weakly relatively hyperbolic with respect to �
and the pair (G; �) satis�es the Bounded Coset Penetration property.

Following the literature, we refer to the elements of the collection� as peripheral
subgroups.

Remark 4.2.6. The de�nition we just gave is equivalent to the one given by
Bowditch in [23], characterizing relatively hyperbolic groups in terms of properly
discontinuous isometric actions on proper Gromov-hyperbolic metric spaces. For
the equivalence, we refer to [23] or [154].

For the reader's convenience, we now present a short list of classical examples of
relatively hyperbolic groups, taken from the introduction to [154] (to which we refer
for further examples).

1. Let M be a complete, connected, �nite-volume non-compact Riemannian man-
ifold with pinched negative sectional curvature K , namely satisfying
� b2 � K � � a2 for some real numbersa; b > 0. Then the fundamental
group � 1(M ) of M is relatively hyperbolic with respect to the collection of
cusp subgroups (cf. [48, 61]). Examples include non-uniform lattices in real
simple Lie groups of real rank one.

2. Let G be aC0(1=6)-small cancellation quotient (cf. [131, Chap. V]) of the free
product of groupsG1; : : : ; Gr . Then G is hyperbolic relative to the collection
of the canonical images of the subgroupsGi in G; this is illustrated in [154].
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3. Let G be a Gromov-hyperbolic group, and assumeH1; : : : ; Hr are quasi-convex
subgroups ofG. Suppose that the cardinalityjgHi g� 1 \ H j j is �nite whenever
i 6= j or g =2 H i . Then G is hyperbolic relative to the collectionH1; : : : ; Hr :
for this, see [61] and [23, Thm. 7.11]. In particular, every Gromov-hyperbolic
group is relatively hyperbolic with respect to the trivial subgroup.

4.2.4 Random walks on �nitely generated groups

Let G be a �nitely generated group endowed with the discrete topology. A Borel
probability measure onG is identi�ed with a function � de�ned on G taking non-
negative real values and satisfying

P
g2 G � (g) = 1 . Then � de�nes a right random

walk on G as follows: let (X n )n� 1 be a sequence of independent, identically dis-
tributed G-valued random variables with common law� . Implicitly, we consider
them to be de�ned over a probability space(
 ; F ; P), which will be �xed hereinafter.
We de�ne a G-valued stochastic process(Yn )n2 N by setting Y0 = e, Yn = X 1 � � � X n

for every integern � 1. The process(Yn )n2 N is called aright random walk on G,
issued from the identitye with increments distributed according to� . Equivalently,
one may de�ned the process(Yn )n2 N as a Markov chain onG issued frome with
(left-invariant) transition matrix Q = ( q(x; y))x;y 2 G given by q(x; y) = � (x � 1y) for
all x; y 2 G (cf. [212, Sec. 1.1]).

Let supp� = f g 2 G : � (g) > 0g be the support of the measure� . If S � G is a
�nite generating set such that the support of� is contained in S [ S� 1, then the
process(Yn )n2 N can also be interpreted as a nearest-neighbour random walk on the
Cayley graph Cay(G; S) of G relative to S, where the walker in positionx moves
to xs with probability � (s), for all s 2 S [ S� 1; x 2 G. Notice that we are not
excluding the case� (e) > 0, so that the walker may have positive probability of
standing still.
Let E[X ] denote the expectation of a random variableX : 
 ! R with respect to
the probability measureP. If � has �nite �rst moment with respect to a length
function ` on G, the sequence of renormalized averaged lengths

1
n

E[`(Yn )]; n � 1

is a subadditive real sequence, and as such converges to a limit� 2 R� 0, called the
escape rate or speed of the random walk(Yn )n2 N. As mentioned in the introduc-
tion (Theorem 4.1.1),P-almost every trajectory (yn )n� 0 2 GN of the random walk
actually satis�es 1

n `(yn ) n!1�! � .

Remark 4.2.7. 1. We could equally well consider random walks issued at any
initial vertex g0 2 G, or yet more generally with any initial distribution, sim-
ply by de�ning Y 0

0 arbitrarily and setting Y 0
n = Y 0

0X 1 � � � X n for any n � 1,
the sequence(X n )n� 1 being as above, and also independent fromY 0

0. It is
then natural to consider the renormalized distance1

n d(Y 0
0; Y 0

n ) from the ini-
tial position, where d is a metric on G arising from a length function` as in
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Section 4.2.1. By invariance ofd under left translations, we have

1
n

d(Y 0
0; Y 0

n ) =
1
n

d(e; X1 � � � X n ) =
1
n

`(Yn )

for every n � 1. Hence, for the purpose of our considerations, there is no loss
of generality in assuming that the random walk starts at the origin.

2. Similarly, restricting to right random walks does not result in any loss of
generality. If Y 0

n = X n � � � X 1; n � 1 is a left random walk issued from the
origin with driving measure � , then (Y � 1

n )n2 N is a right random walk with
driving measure� � � given by � � � (g) = � (g� 1) for every g 2 G; furthermore,
for any length function ` on G, we have`(Y � 1

n ) = `(Yn ) for every n � 1, so
that all our results can be immediately transferred to left random walks.

4.3 The large deviation principle

In this section, we brie�y review some of the terminology that is usually employed
in the theory of large deviations. For a comprehensive introduction to the subject,
the reader is referred to [39].

Throughout this section,X denotes a Hausdor� regular topological space, endowed
with the Borel � -algebraB. Let (� n )n� 1 be a sequence of Borel probability measures
on X , I : X ! [0; 1 ] a lower semicontinuous function. Thee�ective domain of I is
the set D I = f x 2 X : I (x) < 1g .

De�nition 4.3.1. We say that a sequence of Borel probability measures(� n )n� 1

on X satis�es the large deviation principle (or, in abridged form, LDP) with rate
function I if, for any Borel measurable set� � X ,

� inf
x2 � �

I (x) � lim inf
n!1

1
n

log� n (�) � lim sup
n!1

1
n

log� n (�) � � inf
x2 �

I (x) ;

where� � and � denote the interior and the closure of� , respectively.

We observe in passing that, for a given sequence(� n )n� 1 as in De�nition 4.3.1, there
is at most one lower semicontinuous functionI for which the LDP can hold (see
[39, Lem. 4.1.4]).

Remark 4.3.2. If, for every Borel measurable set� � X , the probabilities � n (�)
have a well-de�ned exponential decay rate13 as n tends to in�nity, then it is clear
that the large deviation principle is satis�ed with an appropriate rate function I .
The de�nition has been historically devised to encompass more general situations
arising frequently in general theory of stochastic processes; see also Prop. 4.3.6 below
to appreciate the extra leeway a�orded by this de�nition.

13In other words, if lim
n !1

1
n log � n (�) exists in R� 0.
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In De�nition 4.3.1, it is obviously equivalent to require that

lim inf
n!1

1
n

log� n (V) � � inf
x2 V

I (x) for every open setV � X (4.3.1)

and

lim sup
n!1

1
n

log� n (F ) � � inf
x2 F

I (x) for every closed setF � X : (4.3.2)

De�nition 4.3.3. A sequence(� n )n� 1 of Borel probability measures onX satis�es
the weak large deviation principle (weak LDP) with rate functionI if the lower
bound (4.3.1) holds for any open setV � X , while the upper bound (4.3.2) holds
for all compact setsK � X .

We shall occasionally speak of the full LDP to refer to the LDP in De�nition 4.3.1,
especially when it has to be contrasted with its weak version of De�nition 4.3.3.
If (Zn )n� 1 is a sequence ofX -valued random variables, and� n denotes the law ofZn

for every n � 1, we shall say that(Zn )n� 1 satis�es the (weak) LDP if the sequence
(� n )n� 1 satis�es the (weak) LDP.
Under certain conditions, we may retrieve the full LDP from the existence of the
weak LDP. The most common of these conditions involves the notion of exponential
tightness.

De�nition 4.3.4. We say that a sequence(� n )n� 1 of Borel probability measures
on X is exponentially tight if, for every � 2 R� 0, there exists a compact setK � X
such that

lim sup
n!1

1
n

log� n (X n K ) < � � :

In other words, the mass is concentrated on compact sets on an exponential scale.
It is intuitively clear, and straightforward to prove, that exponential tightness en-
ables to pass from a weak form of the LDP to a strong form, something which we
clarify in the following proposition (cf. [39, Lem. 1.2.18]).

Proposition 4.3.5. Let (� n )n� 1 be an exponentially tight sequence of Borel proba-
bility measures onX . Assume that(� n )n� 1 satis�es the weak LDP with rate function
I . Then:

1. (� n )n� 1 satis�es the LDP with rate function I ;

2. I is a proper function.

The following statement establishes a criterion to determine whether the weak LDP
holds, without knowing the rate function in advance. It will be the key tool to prove
existence of the weak LDP in our context.

Proposition 4.3.6 ([39, Thm. 4.1.11]). Let (� n )n� 1 be a sequence of Borel proba-
bility measures onX . De�ne the function I : X ! [0; 1 ] by

I (x) := sup
x2 V open

� lim inf
n!1

1
n

log� n (V) ; x 2 X : (4.3.3)
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Then I is lower semicontinuous. Moreover, if

I (x) = sup
x2 V open

� lim sup
n!1

1
n

log� n (V) for all x 2 X; (4.3.4)

then the sequence(� n )n� 1 satis�es the weak LDP with rate functionI .

Let us observe that, both in the de�nition (4.3.3) and in the assumption (4.3.4), we
may clearly replace the whole collection of open sets containing the pointx 2 X by
any fundamental system of open neighborhoods ofx.
Assume now thatX is a locally convex, Hausdor� topological vector space overR
(cf. [180, Chap. XIX]), and let X � denote its topological dual. Suppose given a
sequence(� n )n� 1 of Borel probability measures onX . In case the sequence(� n )n� 1

satis�es the LDP on X with a proper convex rate functionI , it is possible to give an
alternative expression for the rate function itself, provided that a certain logarithmic
moment generating function exists. More precisely, de�ne thelogarithmic moment
generating function of the measure� n , for each integern � 1, as the function
� n : X � ! (�1 ; 1 ] given by

� n (' ) = log
Z

X
eh';x i d� n (x) ; ' 2 X � ;

where h�; �i denotes the standard dual pairing betweenX � and X . The limiting
logarithmic moment generating functionof the sequence(� n )n� 1 is then de�ned as
the function � : X � ! (�1 ; 1 ] given by

�( ' ) = lim sup
n!1

1
n

� n (n' ) ; ' 2 X � :

As it happens, there is a close relationship between the rate functionI and the
generating function � , which is provided by classical results in convex analysis.
Given a function f : X ! (�1 ; 1 ] not identically in�nite, we de�ne its Fenchel-
Legendre transformf � : X � ! (�1 ; 1 ] as

f � (' ) = sup
x2 X

fh'; x i � f (x)g ; ' 2 X � :

If g: X � ! (�1 ; 1 ] is a function de�ned on the dual space, we shall view its
Fenchel-Legendre transformg� as a function de�ned just onX , rather than on the
entire bidual X �� .
A remarkable consequence of Varadhan's integral lemma [39, Thm. 4.3.1], in con-
junction with Fenchel-Moreau's duality theorem [24, Thm. 1.11], is the following
characterization of the rate function, for which the reader is referred to
[39, Thm. 4.5.10].

Theorem 4.3.7. Let (� n )n� 1 be a sequence of Borel probability measures on a locally
convex, Hausdor� topological vector spaceX over R. Assume the following:

1. the limiting logarithmic moment generating function� : X � ! (�1 ; 1 ] of the
sequence(� n )n� 1 is real-valued, that is,�( ' ) < 1 for every ' 2 X � ;
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2. the sequence(� n )n� 1 satis�es the LDP with a proper, convex rate functionI .

Then the rate function I is the Fenchel-Legendre transform of� , namely

I (x) = sup
' 2 X �

fh'; x i � �( ' )g

for every x 2 X .

Theorem 4.3.7 reveals the importance of knowinga priori the existence of the large
deviation principle with a proper, convex rate function.

4.4 Existence of the large deviation principle for
random walks

We now set out to prove our main results, that is, Theorems 4.1.4 and 4.1.8. Specif-
ically, we address in Proposition 4.4.3 existence of the weak LDP in the case of free
products, under the pattern-avoiding assumption for the semigroup generated by
the support of the driving measure. Section 4.4.2 deals with the analogous problem
in the context of relatively hyperbolic groups, assuming irreducibility of the ran-
dom walk. In Proposition 4.4.4 the result is upgraded to the full LDP, under the
additional requirement of �niteness of some exponential moment. Convexity of the
rate function, and the its ensuing identi�cation as a Fenchel-Legendre transform,
are dealt with in Section 4.5.

4.4.1 The case of free products

This subsection deals with free products of �nitely generated groups. For a start, we
brie�y recall the setup (cf. Section 4.2). LetG1; : : : ; Gr be a �nite collection of non-
trivial �nitely generated groups of subexponential growth, and letG = G1 � � � � � Gr

be their free product. For anyi 2 f 1; : : : ; rg, we �x a �nite generating set Si � Gi

of Gi , so that S =
S r

i =1 Si is a �nite generating set forG; with ` : G ! N we indicate
its associated word length.
Let � be a probability measure onG, (Yn )n� 0 a right random walk onG issued from
the identity with steps distributed according to � . For every integern � 1, we let
� n be the law of the real-valued random variable1n `(Yn ).

Henceforth, we shall denote byB(y; ") the open interval (y � "; y + ") � R for any
y 2 R and any " > 0. Furthermore, for any positive integerk, we let

kB (y; ") = f kz : z 2 B(y; ")g:

We precede the statement of Proposition 4.4.3 by two technical lemmas which,
taken together, essentially allow to reduce the problem of establishing the large
deviation principle in this context to a setup akin to the standard case of independent
identically distributed real random variables, in which (almost-)additivity of the
process can be put to good use.
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The �rst of the two lemmas allows to deduce a lower bound for the asymptotic
exponential decay rate of the probabilities� n (B (x; b)) from a uniform lower bound
on a non-lacunary sequence of times.

Lemma 4.4.1. Suppose that there exista > 0;  2 R and a strictly increasing
sequence(nk)k� 1 of positive integers withlimk!1 nk+1 =nk = 1 such that

� nk (B (x; a)) � enk  (4.4.1)

for every k � 1. Then, for all b > a,

lim inf
n!1

1
n

log� n (B (x; b)) �  :

Proof. Choose a �nite setF � G such that
P

g2F � (g) > 1=2. For any integerk � 1,
set

M k = supf `(x1 � � � xnk +1 � nk ) : x i 2 F [ f eg for all 1 � i � nk+1 � nkg;

and notice that, by subadditivity of `, the upper boundM k � (nk+1 � nk)M 1 holds.
Now let N � n1 be an arbitrary integer; there exists a uniquek = k(N ) � 1 such
that
nk � N < n k+1 . As b � a > 0, the assumptionnk+1 =nk ! 1 implies that there
exists k0 2 N such that

f `(Ynk ) 2 nkB(x; a)g \ f X nk +1 2 F ; : : : ; X N 2 Fg � f `(YN ) 2 NB (x; b)g

for all k > 0; this follows from the double inequality

j`(g) � `(h)j � `(gh) � `(g) + `(h) ;

holding for every g; h 2 G. Now, if k � k0 and N 2 f nk ; : : : ; nk+1 � 1g, we may
estimate

� N (B (x; b)) = P(`(YN ) 2 nB (x; b))

� P(`(Ynk ) 2 nkB(x; a); X nk +1 2 F ; : : : ; X N 2 F )

= � nk (B (x; a)) � (F )N � nk

� enk  2� (nk +1 � nk ) ;

the last two inequalities being given, respectively, by independence and stationarity
of the process of increments(X n )n� 1, and by the assumption of the lemma. Taking
the logarithm and dividing by N , we obtain

1
N

log� N (B (x; b)) �
nk

N
 �

nk+1 � nk

N
log 2 :

Taking the inferior limit as N ! 1 on both sides, and observing that the assumption
on (nk)k� 1 implies limN !1 nk(N )=N = 1, we achieve the proof.
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The next lemma expresses the possibility of restricting the random walk to subsets
on which the word length ` is almost additive, without losing consistently on the
exponential decay rate of the probabilities involved.
For every T 2 R� 0, set � T = supfj B G i (T)j : i = 1; : : : ; rg. If A is a subset ofG and
g 2 G, we indicate with Ag = f ag : a 2 Ag � G. The notion of pattern avoidance
appearing in the following statement has been de�ned in Section 4.2.2.

Lemma 4.4.2. Let � be a probability measure onG, T � G a �nite subset avoiding
patterns of type sizeD for a certain integer D > 0. Set L := supf `(g) : g 2 T g.
Then, for any T 2 R� 0 and any setF � B G(T) n f eg, there exist a subsetA � F
with � (A) � (r� T )� 2D � (F ) and an elementg 2 T such that at least one of the
following holds:

1. for any integer k � 1 and any collectiong1; : : : ; gk 2 A,

`(g1 � � � gk) � `(g1) + � � � + `(gk) � k(2LD ) ;

2. for any integer k � 1 and any collectiong1g; : : : ; gkg 2 Ag,

`(g1g� � � gkg) � `(g1) + � � � + `(gk) � k(2LD ) :

Observe that T=log� T
T !1�! 1 due to the subexponential growth assumption on

G1; : : : ; Gr ; as a consequence, the factor(r� T )� 2D , quantifying the maximal loss in
probability, is negligible on an exponential scale (cf. the proof of Proposition 4.4.3).
The proof makes use of notions introduced in Section 4.2.2.

Proof. The proof consists of a repeated application of the union bound for� , in
order to extract various subsets ofF with predetermined letters in their reduced-
word expression.
To begin with, there exist (i 1; j 1) 2 f 1; : : : ; rg2 and F1 � F such that
� (F1) � r � 2� (F ) and, for any g 2 F1, the �rst letter of g is in Gi 1 and the last
one is inGj 1 . If i 1 6= j 1, then `(g1 � � � gk) = `(g1) + � � � `(gk) for any g1; : : : ; gk 2 F1,
so that A = F1 ful�ls the statement. If i 1 = j 1, we might choose a subsetE1 � F1

and elementsy1; z1 2 Gi 1 such that � (E1) � � � 2
T � (F1) and, for eachg 2 E1, the �rst

letter of g is y1 and the last one isz1. We distinguish three cases.

� Suppose`(y1) > L; ` (z1) > L ; if g is chosen inT nGi 1 , it is easy to check that
`(g1g� � � gkg) � `(g1) + � � � + `(gk) � k(2L) for any g1g; : : : ; gkg 2 E1g, so that
we may setA = E1 and conclude.

� If just one between y1 and z1 has length exceedingL, or alternatively if
`(y1) � L; ` (z1) � L and z1 6= y� 1

1 , then `(g1 � � � gk) � `(g1)+ � � � + `(gk) � k(2L)
for any g1; : : : ; gk 2 E1; again, settingA = E1 permits to conclude.

The only remaining case is̀ (y1) � L; z1 = y� 1
1 . We then carry out the same

procedure once again, selectingF2 � E1 and (i 2; j 2) 2 f 1; : : : ; rg2, with � (F2) �
r � 2� (E1) and so that, for eachg 2 F2, the second letter ofg is in Gi 2 and the
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second-to-last one is inGj 2 . If i 2 6= j 2, then `(g1 � � � gk) � `(g1) + � � � + `(gk) � k(2L)
for any g1; : : : ; gk 2 F2. If instead i 2 = j 2, then chooseE2 � F2 and elements
y2; z2 2 Gi 2 so that � (E2) � � � 2

T � (F2) and, for eachg 2 E2, the second letter ofg
is y2 and the second-to-last one isz2. Notice that, as a result of the assumption,T
is not contained in any conjugate of any factorGi by any word ! of type size not
exceedingD. Therefore, unless̀ (y2) � L and z2 = y� 1

2 , we can setA = E2 and
conclude as before.
Proceeding in this way, we select, if needed at each successive step, nested subsets

E2 � F3 � E3 � � � � � ED :

The set ED has the property that

� (ED ) � (� T )� 2� (FD ) � (r� T )� 2D � (F ) ;

furthermore, there are lettersy3; : : : ; yD ; zD such that, for any g 2 ED , the reduced-
word expression ofg is y1 � � � yD � � � zD y� 1

D � 1 � � � y� 1
1 . It remains to deal with three

possibilities, as above.

1) Suppose`(yD ) > L; ` (zD ) > L , and set ! = y1 � � � yD � 1. If g is chosen in
T n!G i D ! � 1, whereGi D is the factor to which both yD and zD belong14, then
`(g1g� � � gkg) � `(g1) + � � � + `(gk) � k(2DL ) for any g1g; : : : ; gkg 2 ED g, so
that we may setA = ED and conclude.

2) If just one betweenyD and zD has length exceedingL, or alternatively if
`(yD ) � L; ` (zD ) � L and zD 6= y� 1

D , then `(g1 � � � gk) � `(g1) + � � � + `(gk) �
k(2DL ) for any g1; : : : ; gk 2 E1; conclude by settingA = E1.

3) Finally, assume`(y1) � L; zD = y� 1
D , and chooseg 2 T not starting with

y1 � � � yD nor ending with (y1 � � � yD )� 1. Then again `(g1g� � � gkg) � `(g1) +
� � � + `(gk) � k(2DL ) for any g1g; : : : ; gkg 2 ED � g. The set A = ED satis�es
the conclusion.

The argument is �nalized.

If a set A (resp. Ag) satis�es the conclusion of Lemma 4.4.2, then we say thatA
(resp. Ag) has the weak length additivity propertyof order LD .

We are now in a position to prove existence of the weak large deviation principle.

Proposition 4.4.3. Let G; S; `; � be as above,(Yn )n� 0 a right random walk onG
issued from the identity with increments distributed according to� . Suppose that the
support of � generates a pattern-avoiding semigroup� � G. Then the sequence of
random variables

�
1
n `(Yn )

�

n� 1
satis�es the weak LDP with a rate functionI : R� 0 !

[0; 1 ].
14To select an elementg of this sort, concatenate any letter y0

D with ! , in such a way that !y 0
D

is a reduced word; using thatT avoids patterns of type sizeD , pick g 2 T not starting with !y 0
D

nor ending with (!y 0
D ) � 1.
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Proof. We rely on the criterion phrased in Proposition 4.3.6, checking that the
condition expressed therein is satis�ed. Arguing by contradiction, suppose that
there existsx 2 R� 0 such that

I (x) 6= sup
x2 V open

� lim sup
n!1

1
n

log� n (V): (4.4.2)

As the left-hand side of (4.4.2) always dominates the right-hand side by de�nition,
this yields

I (x) > sup
x2 V open

� lim sup
n!1

1
n

log� n (V): (4.4.3)

Notice �rst that, necessarily, x is strictly positive; indeed, forx = 0 the criterion in
Proposition 4.3.6 is trivially satis�ed as the limit

lim
n!1

1
n

log� n (B (0; "))

exists in [�1 ; 0] for every " > 0, by subadditivity of `.
As a consequence of (4.4.3), there exist�; � > 0 such that

� lim inf
n!1

1
n

log� n (B (x; � )) >

 

sup
�> 0

� lim sup
n!1

1
n

log� n (B (x; � ))

!

+ � : (4.4.4)

Fix a positive real number � such that � < inf f x; � g; then, by (4.4.4), there are
in�nitely many positive integers nj ; j � 1, for which

lim inf
n!1

1
n

log� n (B (x; � )) <
1
nj

log� n j ((B (x; � ))) � � : (4.4.5)

For notational simplicity, denote by

� = lim inf
n!1

1
n

log� n (B (x; � )) ; � j =
1
nj

log� n j ((B (x; � ))) for every j � 1 :

(4.4.6)
We claim that, if j is taken to be su�ciently large, the inequality � � � j � � holds,
which is opposite to what is given by (4.4.5), giving the desired contradiction.
The hypothesis on the semigroup� ensures the existence of a �nite subsetT � � nf eg
with the following property: there exists an integerD > 0 such that, for any reduced
word ! of type sizeD in G, we can �nd g 2 T not starting in ! and not ending
in ! � 1 (cf. Section 4.2.2). For anyg 2 T , chooset(g) 2 N� 1 and p(g) 2 R> 0

such that the random walk attains g in t(g) steps with probability p(g), that is
P(Yt (g) = g) = p(g). De�ne

L = supf `(g) : g 2 T g ; p = inf f p(g) : g 2 T g ; t = supf t(g) : g 2 T g :

Keeping with our earlier notation, let

� T = supfj B G i (T)j : i = 1; : : : ; rg ; T 2 R� 0 :
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Now choose an integerj 0 � 1 so that

nj 0 � sup
n
(2LD + tx )( � � � )� 1; � � 1

�
2D(log r + log � n j 0 (x+ � )) � logp

�o
;

this exists sinceT=log� T
T !1�! 1 by the subexponential-growth assumption on the

factors G1; : : : ; Gr . De�ne F = f g 2 G : `(g) 2 nj 0 B(x; � )g, so that
e� j 0 n j 0 = P(Yn j 0

2 F ) by (4.4.6). Notice also that F does not contain the iden-
tity as nj 0 (x � � ) > 0. Applying Lemma 4.4.2, with � being the law of the random
variable Yn j 0

, we can manufacture a setA � F and an elementg 2 T such that

� P(Yn j 0
2 A) � (r� n j 0 (x+ � ))� 2D e� j 0 n j 0 and

� either A or Ag has the weak length additivity property of orderLD .

We distinguish two cases.

ˆ First case: A has the weak length additivity property of orderLD .

De�ne a sequence(nk)k� 1 by setting nk = knj 0 for any k � 1. Since
nj 0 � 2LD (� � � )� 1, there exists � 0 < � such that � 0 � � � 2n� 1

j 0
LD . For

such a choice of� 0, we have that `(g1 � � � gk) 2 nkB(x; � 0) wheneverg1; : : : ; gk

are chosen from the subsetA. Therefore, we may estimate, for eachk � 1,

� nk (B (x; � 0)) = P(`(Ynk ) 2 nkB(x; � 0))

� P(X 1 � � � X n j 0
2 A; : : : ; X nk � 1+1 � � � X nk 2 A)

� P(Yn j 0
2 A)k �

�
(r� n j 0 (x+ � ))� 2D e� j 0 n j 0

� k
� enk (� j 0 � � ) ;

where the middle inequality is given by independence and stationarity of the
process(X n )n� 1, while the last one comes from our choice

n1 = nj 0 � 2D� � 1(log r + log � n j 0 (x+ � )) :

Lemma 4.4.1 entails

� = lim inf
n!1

1
n

log� nB(x; � ) � � j 0 � � ;

as desired.

ˆ Second case:Ag has the weak length additivity property of orderLD .

De�ne the sequencenk = k(nj 0 + t(g)); k � 1. Sincenj 0 � (� � � )� 1(2LD + tx ),
it is possible to select� 0 < � so that � 0 � � � n� 1

j 0
(2LD + tx ). It is straight-

forward to verify that this choice of � 0 ensures that`(g1g� � � gkg) 2 nkB(x; � 0)
wheneverg1; : : : ; gk 2 A.

As before, we may thus estimate

� nk (B (x; � 0)) = P(`(Ynk ) 2 nkB(x; � 0))

� P(X 1 � � � X n j 0
2 A; X n j 0 +1 � � � X n j 0 + t(g) = g)k

� P(Yn j 0
2 A)kp(g)k

�
�
(r� n j 0 (x+ � ))� 2D e� j 0 n j 0

� k
pk

� enk (� j 0 � � )
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for eachk � 1. This time, the last inequality stems from our choice

nj 0 � � � 1
�
2D(log r + log � n j 0 (x+ � )) � logp

�
:

Applying Lemma 4.4.1 once more, we deduce again that� � � j 0 � � .

The proof is concluded.

Proposition 4.4.4. In the setting of Proposition 4.4.3, assume further that� has
a �nite exponential moment. Then the rate functionI governing the weak LDP for
the sequence

�
1
n `(Yn )

�

n� 1
is proper, and the sequence

�
1
n `(Yn )

�

n� 1
satis�es the full

LDP with rate function I .

Proof. As before, we let� n be the law of the random variable1
n `(Yn ), for every

n � 1. In light of Proposition 4.3.5, it su�ces to show that the sequence(� n )n� 1

is exponentially tight. From the assumption, there exists a real number� > 0 such
that C :=

R
G exp (� ` (g)) d� (g) < 1 .

Fix a real number M > 0. Then

� n (R� 0 n [0; M ]) = P(`(Yn ) > nM ) = P(exp� ` (Yn ) > exp�nM ) �
E[exp� ` (Yn )]

exp�nM
;

the last upper bound being given by Markov's inequality (see [106, Thm. 5.11]).
Subadditivity of the word length `, together with independence and stationarity of
the process(X k)k� 1, gives

E[exp(� ` (Yn ))] � E

"

exp�

 nX

i =1

`(X n )

!#

= E

" nY

i =1

exp� ` (X i )

#

=
nY

i =1

E[exp� ` (X i )]

= ( E[exp� ` (X 1)])n =

 Z

G
e� ` (g) d� (g)

! n

= Cn

for every n � 1. Combining the previous two estimates, taking the logarithm and
dividing by n, we obtain

1
n

log� n (R� 0 n [0; M ]) � logC � �M :

As a result, we conclude that

lim sup
n!1

1
n

log� n (R� 0 n [0; M ]) M !1�! �1 ;

which establishes exponential tightness of the sequence(� n )n� 1.

4.4.2 The case of relatively hyperbolic groups

As already mentioned in Section 4.1.3, the fundamental geometric ingredient enter-
ing the proof of Theorem 4.1.8 is the following geometric observation, initially due
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to Gouëzel ([75, Lem. 2.4]) for Gromov-hyperbolic groups and later vastly gener-
alized by Yang ([215, Lem. 2.14]) to groups acting isometrically with contracting
elements on geodesic metric spaces. We recall thatd denotes the graph distance on
Cay

�
G; S[

S
1� i � r H i

�
, so that in particular d(e; x) = `(x) for any x 2 G, while d0 is

the graph distance on Cay(G; S). For any real numberR > 0, let B G
d0(e; R) be the

closedd0-ball of radius R centered at the identity.

Proposition 4.4.5 ([44, Lem. 5.3]). Let G be a non-elementary relatively hyperbolic
group. Then, there exist constantsc; C > 0 such that, for anyx; y 2 G, there exists
� 2 B G

d0(e; C) such thatd(e; x�y ) � d(e; x) + d(e; y) � c.

In other words, upon perturbing the product of two elements by a bounded amount,
there is a controlled loss of additivity in the length function.

The following lemma provides an adequate replacement for Lemma 4.4.2 in the
setting of relatively hyperbolic groups. Recall the notationF j for any subsetF � G
and any integerj � 1, which indicates the set of all productsx1 � � � x j of elements
x1; : : : ; xj 2 F .

Lemma 4.4.6. Let F � G be a subset,� a probability measure onG supported inside
F . There exist a sequence(� i ) i � 1 of elements inB G

d0(e; C) and subsetsE j � F j for
every integerj � 2 such that the following assertions hold, for every integerk � 2:

1. for any k-tuple (g1; : : : ; gk) 2 Ek ,

`(g1� 1g2� 2 � � � gk� 1� k� 1gk) � `(g1) + � � � + `(gk) � (k � 1)c ;

2. � k(Ek) � j B G
d0(e; C)j � (k� 1).

Here, the constantsc and C are as in Proposition 4.4.5.

Proof. De�ne a map F � F ! B G
d0(e; C) assigning to each pair(x; y) 2 F 2 an element

� xy 2 B G
d0(e; C) such that d(e; x� xy y) � d(e; x)+ d(e; y)� c, whose existence is ensured

by Proposition 4.4.5. Applying the union bound to the probability measure� � �
on F 2, we can �nd an element � 1 2 B G

d0(e; C) and a subsetE2 � F 2 such that
� � � (E2) � j B G

d0(e; C)j � 1 and � xy = � 1 for every (x; y) 2 E2. Hence the lemma is
shown fork = 2.
Consider now the setE2 = f x� 1y : (x; y) 2 E2g � G, and de�ne a map
E2 � F ! B G

d0(e; C) as before, via Proposition 4.4.5. We endowE2 with the push-
forward � 2 of the restriction of � � � to E2, normalized to be a probability measure,
under the map� 2 : E2 3 (x; y) 7! x� 1y 2 E2. Arguing as before, there exist an ele-
ment � 2 2 B G

d0(e; C) and a subsetfE3 � E2 � F such that � 2 � � ( fE3) � j B G
d0(e; C)j � 1

and � xy = � 2 for every (x; y) 2 fE3. Set E3 = ( � � idF )� 1( fE3), which is a subset of
F 3. If (g1; g2; g3) 2 E3, then

`(g1� 1g2� 2g3) � `(g1� 1g2) + `(g3) � c � `(g1) + `(g2) � c + `(g3) � c

= `(g1) + `(g2) + `(g3) � 2c ;
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where the �rst inequality stems from the fact that (g1� 1g2; g3) 2 fE3, while the second
one from(g1; g2) 2 E2. Furthermore, we have

� � � � � (E3) =
�
� 2 � � ( fE3)

�
�

�
� � � (E2)

�
� j B G

d0(e; C)j � 2 :

A straightforward iteration of this procedure gives both assertions of the lemma for
every k.

Proof of Theorem 4.1.8. The argument starts out exactly as in the proof of Propo-
sition 4.4.3. Speci�cally, for the purpose of a contradiction, we assume that the
criterion phrased in Proposition 4.3.6 is not full�lled, whence there exists real num-
bersx; �; � > 0 such that, for every� > 0,

� lim inf
n!1

1
n

log� n (B (x; � )) >

 

sup
�> 0

� lim sup
n!1

1
n

log� n (B (x; � ))

!

+ � :

Fix a positive real number� such that � < inf f x; � g, and select a strictly increasing
sequence(nj ) j � 1 of natural numbers for which

lim inf
n!1

1
n

log� n (B (x; � )) <
1
nj

log� n j ((B (x; � ))) � � : (4.4.7)

Lightening notation, set

� = lim inf
n!1

1
n

log� n (B (x; � )) ; � j =
1
nj

log� n j ((B (x; � ))) for every j � 1:

We intend to show that the inequality � � � j � � holds wheneverj is taken to be
su�ciently large. In light of (4.4.7), the desired contradiction is then achieved.
This is the point from which the argument di�ers from the proof of Proposition 4.4.3.
As the random walk is irreducible, we may choose, for each group element
� 2 B G

d0(e; C), an integer t(� ) � 1 and and a real numberp(� ) 2 (0; 1] such that �
is attained by the random walk within t(� ) steps with probability p(� ). Set

t = supf t(� ) : � 2 B G
d0(e; C)g and p = inf f p(� ) : � 2 B G

d0(e; C)g ; (4.4.8)

notice that t < 1 and p > 0 as B G
d0(e; C) is a �nite set.

Choose an integerj 0 � 1 so that nj 0 � (tx + c)( � � � )� 1, and de�ne

F = f g 2 G : `(g) 2 nj 0 B(x; � )g ;

so that e� j 0 n j 0 = P(Yn j 0
2 F ). It is also bene�cial to �x a sequence( ~Yi ) i � 1 of

independent copies ofYn j 0
. We now apply Lemma 4.4.6 to the setF and to the

normalized restriction of the law ofYn j 0
to the set F . There exist thus a sequence

(� i ) i � 1 of elements ofB G
d0(e; C) and, for every integerk � 2, a subsetEk of F k such

that
P(( ~Y1; : : : ; ~Yk) 2 Ek) � j B G

d0(e; C)j � (k� 1)ek� j 0 n j 0
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and, for any choice of elements(g1; : : : ; gk) 2 Ek ,

`(g1� 1g2� 2 � � � gk� 1� k� 1gk) � `(g1) + � � � `(gk) � (k � 1)c : (4.4.9)

Suppose now(g1; : : : ; gk) is a k-tuple in the set Ek . Then, combining (4.4.9) with
subadditivity of `, and setting c = supf c; Cg, we get

`(g1) + � � � + `(gk) � kc � `(g1� 1g2� 2 � � � gk1 � k� 1gk) � `(g1) + � � � `(gk) + kc ;

which, together with the fact that Ek is a subset ofF k , delivers

k
�
nj 0 (x � � ) � c

�
< ` (g1� 1g2� 2 � � � gk1 � k� 1gk) < k

�
nj 0 (x + � ) + c

�
:

The sequence(nk)k� 1 de�ned by

nk = knj 0 + t(� 1) + � � � t(� k� 1) ; k � 1

is non-lacunary, that is, it satis�es the assumption of Lemma 4.4.1. Now choose
� 0 < � such that nj 0 (� 0 � � ) � tx + c; such a� 0 exists by virtue of our choice ofj 0,
and ensures that, for anyk � 2, the length of the elementg1� 1g2� 2 � � � gk� 1� k� 1gk

belongs tonkB(x; � 0) whenever(g1; : : : ; gk) 2 Ek .
We may now estimate, for every integerk � 2,

P(`(Ynk ) 2 nkB(x; � 0)) � P
�
( ~Y1; : : : ; ~Yk) 2 Ek

�
� p(� 1) � � � p(� k� 1)

� ek� j 0 n j 0 jB G
d0(e; C)j � (k� 1) pk� 1

� enk (� j 0 � � ) ;

where the last inequality is a consequence of our choice

nj 0 � � � 1
�
logjB G

d0(e; C)j � logp
�

;

whereas the �rst one derives from independence and stationarity of the process
(X n )n� 1. Lemma 4.4.1 allows to deduce that� � � j 0 � � , as desired.

4.5 Convexity of the rate function

The chief aim of this section is the proof of convexity of the rate function associated
to the large deviation principle for the sequence

�
1
n `(Yn )

�

n� 1
. In the last part of

the section, we gather some further properties of the rate function, and deduce its
characterization expressed in the last sentence of Theorem 4.1.4. As in the foregoing
section, we let� n denote the law of the random variable1

n `(Yn ) for every n � 1.
Recall that, if X is a real vector space, a functionf : X ! (�1 ; + 1 ] is convex if,
for any x1; x2 2 X and any � 2 [0; 1],

f (�x 1 + (1 � � )x2) � �f (x1) + (1 � � )f (x2) ; (4.5.1)
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the function f is said to be mid-point convex if the previous inequality holds for
� = 1=2, that is, if

f

 
1
2

x1 +
1
2

x2

!

�
1
2

f (x1) +
1
2

f (x2)

for all x1; x2 2 X .
Suppose nowX is a topological real vector space. By iteration, a mid-point con-
vex function f satis�es the inequality in (4.5.1) for any value of � in the set
f k=2n : n 2 N; k 2 f 0; : : : ; 2ngg. The latter set being dense in[0; 1], (4.5.1)
can be extended to all� 2 [0; 1] by a standard approximation argument, provided
that we know that f is lower semicontinuous. To wrap up, a lower semicontinuous,
mid-point convex function f : X ! (�1 : + 1 ] is convex.

Proposition 4.5.1. Let G; S; `; �; (Yn )n� 0 be as in Proposition 4.4.3. Then the
rate function I , governing the LDP for the sequence of real-valued random variables�

1
n `(Yn )

�

n� 1
, is convex.

The proof bears a lot of resemblance with the proof of Proposition 4.4.3; for the
sake of conciseness, we shall omit a few details.

Proof. As observed in the previous paragraph, it su�ces to show thatI is mid-point
convex, since we already know thatI is lower semicontinuous (cf. Proposition 4.3.6).
Again, we argue by contradiction: assume there existx1 < x 2 2 R such that

I

 
1
2

x1 +
1
2

x2

!

>
1
2

I (x1) +
1
2

I (x2) : (4.5.2)

Recall that we have

I (x) = sup
x2 V open

� lim inf
n!1

1
n

log� n (V) = sup
x2 V open

� lim sup
n!1

1
n

log� n (V)

for every x 2 R; therefore, (4.5.2) implies that there exist�; � > 0 such that

lim sup
n!1

1
n

log� n

 

B

 
1
2

x1 +
1
2

x2; �

!!

<

<
1
2

 

lim inf
n!1

1
n

log� n (B (x1; � 1)) + lim inf
n!1

1
n

log� n (B (x2; � 2))

!

� �

(4.5.3)

for any � 1; � 2 > 0. Notice that this forces in particular x1; x2 2 R� 0. Choose
� := � 1 = � 2 < � . We claim that, for a su�ciently large n0 and every integern � n0,
there exists� (n) 2 f 2n; : : : ; 2n + tg such that

1
� (n)

log � � (n)

 

B

 
1
2

x1 +
1
2

x2; �

!!

�

�
1
2

 
1
n

log� n (B (x1; � )) +
1
n

log� n (B (x2; � ))

!

� � :
(4.5.4)
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Letting n vary over an arithmetic progression for which the corresponding sequence
of � (n) is strictly increasing, it is clear that we obtain a contradiction to (4.5.3).
It remains to prove the claim just stated. LetT � � n f eg be a �nite set avoiding
patterns of type sizeD, and �x n � n0; let Fi = f g 2 G : `(g) 2 nB (x i ; � )g for
i = 1; 2. Adapting the proof of Lemma 4.4.2 appropriately15, we deduce that there
is an elementg 2 T and subsetsA i � Fi such that

P(Yn 2 A i ) � (r� n(x+ � i ))
� D P(Yn 2 Fi )

and

� either for any g1 2 A1 and g2 2 A2 it holds `(g1g2) � `(g1) + `(g2) � 2LD ,

� or for any g1 2 A1 and g2 2 A2 we have`(g1gg2) � `(g1) + `(g2) � 2LD .

In the �rst of the cases described above, we get the inequality (4.5.4) for� (n) = 2 n,
by observing that

g1 2 A1; g2 2 A2 =) `(g1g2) 2 2nB

 
1
2

x1 +
1
2

x2; �

!

;

in the second case, we get (4.5.4) for� (n) = 2 n + t(g). We refer to the proof of
Proposition 4.4.3 for the missing details.

We now turn to the case of relatively hyperbolic groups, clarifying just the few
modi�cations needed in the proof.

Proposition 4.5.2. Let G; S; `; �; (Yn )n� 0 be as in Theorem 4.1.8. Then the rate
function I , governing the LDP for the sequence of real-valued random variables�

1
n `(Yn )

�

n� 1
, is convex.

Proof. Let t be de�ned as in (4.4.8),c and C as given by Proposition 4.4.5. Arguing
by contradiction, let x1; x2; �; � and � be as in the proof of Proposition 4.5.1. We
now show that there existsn0 2 N such that, for every integern � n0, we can �nd
an integer � (n) 2 f 2n; : : : ; 2n + tg such that (4.5.4) holds. The conclusion is then
reached as in the proof of Proposition 4.5.1.
Select an integern0 2 N with

n0 �
1

2(� � � )
sup

(

C; c+ t

 
x1 + x2

2

!)

:

Let n � n0, and de�ne

Fi = f g 2 G : `(g) 2 nB (x i ; � )g ; i = 1; 2 :

15There is a minor nuisance here ifx1 = 0 , asF1 contains the identity; replacing F1 with F1 nf eg
results in harmless modi�cations of the probabilities involved.
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Let also ~Y1; ~Y2 be two independent copies ofYn . Adapting the proof of Lemma 4.4.6
appropriately, we deduce that there is an element� 2 B G

d0(e; C) and a subset
E � F1 � F2 such that

P(( ~Y1; ~Y2) 2 E) � j B G
d0(e; C)j � 1P(Yn 2 F1)P(Yn 2 F2)

and
`(g1�g 2) � `(g1) + `(g2) � c (4.5.5)

for any (g1; g2) 2 E. In particular, (4.5.5) together with the choice ofn0 imply that

`(g1�g 2) 2 (2n + t(� ))B ((x1 + x2)=2; � )

whenever(g1; g2) 2 E; hence, (4.5.4) is satis�ed for� (n) := 2n + t(� ).

4.6 Further properties of the rate function

4.6.1 E�ective domain, escape rate and spectral radius

We list below some additional properties of the rate function governing the the
large deviation principle, emphasizing connections with other relevant quantities
associated to the random walk, such as the rate of escape and the spectral radius.

1. Suppose that the driving measure� has �nite �rst moment with respect to
the word length `. As in this case the sequence1n `(Yn ) converges almost surely
to the escape rate� as n tends to in�nity (Theorem 4.1.1), the rate function
I has a zero atx = � .

2. Convexity of the rate function I gives, as an immediate corollary, that its
e�ective domain D I is a convex subset ofR� 0, hence a (possibly degenerate16)
sub-interval of the positive half-line. Standard properties of convex functions
de�ned on sub-intervals of the real line imply that, on the open intervalD �

I ,
the rate function I is continuous, admits left and right derivatives at every
point, and it is di�erentiable outside a countable set of points. In particular,
continuity on the interior D �

I gives that, for every open setV � D � ,

lim
n!1

1
n

log� n (V) = � inf
x2 V

I (x) ;

in other words, the exponential decay rate of the sequence(� n (V))n� 1 is well-
de�ned wheneverV is an open subset ofD �

I .

16In general, the rate function I can be as degenerate as possible: for instance, ifG = ha; bi is
a free group on two generators and� (a) = p = 1 � � (b) for some p 2 [0; 1], then I (1) = 0 and
I (x) = 1 for any x 2 R� 0 n f 1g, as `(Yn ) = n P-almost surely for everyn.
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3. De�ne the spectral radiusof the random walk as

� = lim sup
n!1

P(Yn = e)
1
n 2 [0; 1] :

If the measure� is symmetric, which is to say that� (g) = � (g� 1) for every
g 2 G, this quantity coincides with the spectral radius of theMarkov operator
associated with the random walk (cf. [133, Chap. 6]). For every� > 0, we have

� n (B (0; � )) = � n ([0; � )) � � n (0) = P(`(Yn ) = 0) = P(Yn = e);

which implies

lim sup
n!1

1
n

log� n (B (0; � )) � lim sup
n!1

1
n

logP(Yn = e) = log � ;

with the understanding that log� = �1 if � = 0. The previous inequality
holding for every� > 0, we infer that

I (0) = sup
�> 0

� lim sup
n!1

1
n

log� n (B (0; � )) � � log� : (4.6.1)

As a consequence, we deduce that the origin lies in the e�ective domain ofI
provided that the spectral radius is strictly positive. This occurs, for instance,
whenever the semigroup� generated bysupp� contains e: if n0 2 N is any
integer for which P(Yn0 = e) > 0, then

� � lim sup
k!1

P(Ykn 0 = e)
1

kn 0 � lim sup
k!1

�
P(Yn0 = e)k

� 1
kn 0 > 0:

It is worth mentioning that equality I (0) = � log� actually holds17, whenever
the large deviation principle for the word length functional is satis�ed and
the measure� driving the random walk veri�es inf f � (g) : g 2 supp� g > 0
(see [149, Lem. 2.8]).

4. As far as the least upper bound ofD I is concerned, assume that the support
of � is bounded, and letL = supf `(g) : g 2 supp� g < 1 . Then I � 1 on
the open half-line(L; 1 ), as subadditivity of ` implies that, P-almost surely,
`(Yn ) � nL for every n � 1. Therefore, in this case,D I is contained in the
compact interval [0; L].

If no restriction is placed on the size ofsupp� , then the least upper bound
of D I may be in�nite. Consider, for instance,G = ha; bi a free group on two
generators, and choose a measure� with supp� = hai . Then

P(`(Yn ) = nk) � (� (ak))n

for all integersn; k � 1, so that I (k) < 1 for any k � 1. In this example, we
thus have that D I = R� 0.

17We thank S. Müller for communicating this fact.
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4.6.2 The rate function as a Fenchel-Legendre transform

It remains to prove the �nal statement of Theorem 4.1.4, under the assumption that
� has �nite moment-generating function. By virtue of Theorem 4.3.7, it su�ces
to prove that the limiting logarithmic moment generating function of the sequence
(� n )n� 1, given by

�( z) = lim sup
n!1

1
n

log
Z

R
enz �xd� n (x) = lim sup

n!1

1
n

logE[ez�`(Yn ) ] ; z 2 R;

is �nite everywhere, where we have canonically identi�edR with its dual space, and
the dual pairing with the standard product of real numbers.
Fix z 2 R� 0 ; then E[ez�`(Y1 ) ] =

R
G exp (z`(g)) d� (g) < 1 , since all exponential

moments of� are �nite. Moreover, for any n; m � 1, we have

E[ez�`(Yn + m ) ] � E[ez�`(X 1 ���X n )ez�`(X n +1 ���X n + m ) ] = E[ez�`(Yn ) ]E[ez�`(Ym ) ] ;

the �rst inequality comes from subadditivity of the length function `, whereas the
second follows from independence and stationarity of the process(X n )n� 1. There-
fore, the sequence

an = log E[ez�`(Yn ) ] ; n � 1 (4.6.2)

is subadditive, that is an+ m � an + am for every n; m � 1; Fekete's lemma (see
[133, Ex. 3.9]) gives

�( z) = lim
n!1

1
n

logE[ez�`(Yn )i ] = inf
n� 1

1
n

logE[ez�`(Yn )i ] � E[ez�`(Y1 ) ] < 1 :

If z 2 R< 0 , a similar argument shows that the sequence (4.6.2) is superadditive,
and �( z) < 1 follows all the same.

4.7 Concluding remarks and open questions

4.7.1 Groups with strongly connected �nite-state automata

We mention another class of examples to which our overarching strategy of proof
is amenable to be generalized: those are �nitely generated groups whose cone type
automaton with respect to a given generating set is �nite and strongly connected.
Let G be a �nitely generated group,S a �nite set of generators,` the word length
de�ned by S on G. For every elementg 2 G, we de�ne the cone typeof g as the set

C(g) = f h 2 G : `(gh) = `(g) + `(h)g:

Notice that the usual de�nition of cone type which appears in the literature (see,
for instance, [25, 56, 153]) involves geodesic words in the alphabetS, rather that
actual group elements ofG; our de�nition is more convenient for the purposes of
this discussion.
The cone type of an element selects those geodesic segments that can be attached
(in algebraic terms, multiplied) to it on the right so that the resulting concatenation



150 4.7. Concluding remarks and open questions

is again a geodesic segment. Observe that it is precisely this notion that, implicitly,
comes into play both in the proof of existence of the large deviation principle and
in the proof of convexity of the rate function.
Cone types o�er an algorithmic way to label geodesics in the groupG, in other
words to identify those strings(s1; : : : ; sn ) of letters in the alphabet S such that
`(s1 � � � sn ) = n. This is achieved through the construction of a �nite state automaton
(cf. [56]), called thecone type automatonof G with respect to the language given
by S. Assume there are only �nitely many cone typesC0; C1; : : : ; Cs, which we view
as vertices of a directed graph� whose edges are labelled by elements ofS; more
precisely, we connect the cone typeC(g) of an elementg to the cone type ofC(gs)
via a directed edge labelled bys 2 S if and only if s 2 C(g). It is immediate to check
that the de�nition doesn't depend on the choice ofg but only on its cone type. If
the identity element of G does not belong toS, there is a one-to-one correspondence
between edge-paths in the directed graph� starting at the cone type of the identity,
say C0, and �nite sequences(s1; : : : ; sn ) 2 Sn such that `(s1 � � � sn ) = n, that is,
geodesic words in the alphabetS.
Now, the conditions we need to impose in order for the arguments of Sections 4.4
and 4.5 to carry over una�ectedly are:

1. the �nite directed graph � is strongly connected, meaning that there is a
directed path joining any two of its vertices;

2. every element ofG belongs to the cone type of some non-trivial element;
otherwise stated, for any geodesic word! = ( s1; : : : ; sn ) in the alphabet S,
there is a cone typeC 6= C0 from which we can follow a directed path in the
graph � according to the labelling given by! .

For the purposes of illustration, we mention the well-known example of random
walks on integer lattices.

Example 4.7.1. Consider thed-dimensional integer latticeG = Zd with its stan-
dard symmetric set of generatorsS = f� ei : 1 � i � dg, (e1; : : : ; ed) being the
canonical basis ofRd. Any probability distribution � with supp� � S gives rise to a
simple random walk(Yn )n2 N on Zd. It is clear that there are exactly2d + 2d+ 1 dif-
ferent cone types for the pair(G; S): those are the2d quadrants, the2d half-spaces
delimited by the d coordinate planes, and the wholeZd. It takes a moment to realize
that both conditions stated above are met. We thus recover, by elementary means,
existence of the large deviation principle with convex rate function for the process�

1
n kYnk1

�
, where k(x1; : : : ; xd)k1 = jx1j + � � � j xdj for any (x1; : : : ; xd) 2 Rd. This

result is usually seen as a straightforward consequence of Cramer's theorem for the
empirical mean of i.i.d. random vectors (see [39, Thm. 2.2.30]).

Finiteness of the number of cone types appears to be an intrinsic requirement when
attempting to establish the large deviation principle via the strategy presented here,
while the two additional conditions on the cone type automaton mentioned above
can be presumably lifted through a re�nement of the method.
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A large class of �nitely generated groups having only �nitely many cone types, with
respect to any �nite generating set, is given by Gromov-hyperbolic groups; indeed, in
such groups the cone type of an element only depends on itsk-tail , for a �xed positive
integer k depending only on the group (see [25, Thm. III.2.18]). Our considerations
thus provide an alternative proof of Theorem 4.1.8 for Gromov-hyperbolic groups.

4.7.2 Some open problems

Computing the exact expression of the rate function, in the cases treated by Theo-
rems 4.1.4 and Theorem 4.1.8, is mostly out of reach; however, it is worth carrying
through the computation in the easiest case of symmetric simple random walks on
free groups, to get a �avour of what should happen in more general circumstances.
This has already been performed in [185]: letG be a free group onr � 1 gener-
ators, S = f a1; : : : ; ar g a free generating set with associated word length̀, � the
uniform probability measure onS [ S� 1, that is, � (ai ) = � (a� 1

i ) = (2 r )� 1 for any
i 2 f 1; : : : ; rg. The rate function governing the alrge deviation principle for the
sequence

�
1
n `(Yn )

�

n� 1
is given by the following expression:

I (x) =

8
<

:

1+ x
2 log (1 + x) + 1� x

2 log (1 � x) + log r � 1+ x
2 log (2r � 1) if x 2 [0; 1];

1 otherwise;

where we agree that0 log 0 = 0. Observe that the function I is analytic in (0; 1)
and strictly convex in its e�ective domain [0; 1], and hence admits a unique zero at
� = 1 � 1=r, corresponding to the escape rate of the random walk; as a consequence
thereof, the probability P

�
j 1

n `(Yn ) � � j � "
�

that the renormalized length deviates
largely from the escape rate decays exponentially fast withn for any " > 0. Further-
more, the value ofI at 0 is equal (in absolute value) to the logarithm of the spectral
radius, as expected (cf. Section 4.6.1). Lastly, we notice that the right derivative
I 0(0) at 0 is �nite, while the left derivative I 0(1) at 1 is in�nite.
This motivates the following questions:

1. Is the rate function I in Theorems 4.1.4 and 4.1.8 always strictly convex? In
particular, does it always have a unique zero atx = � ?

2. What are the �ner regularity properties of the rate function? What is the be-
haviour of the (one-sided) derivatives ofI at the extreme points of its e�ective
domain?

It is currently unknown to the author whether Proposition 4.4.5 holds beyond the
realm of relative word distances on relatively hyperbolic groups and of isometric
actions with contracting elements (cf. Remark 4.1.10). In the presence of such a
generalization, the argument leading to Theorem 4.1.8 would carry over una�ect-
edly. On the other hand, it would be desirable to dispense with the irreducibility
assumption on the random walk, replacing it with a milder non-degeneracy condi-
tion. In the case of Theorem 4.1.4, we have thoroughly explored how the peculiar
structure of free products allows for a considerable weakening of irreducibility; in
general, a further quantitative re�nement of Proposition 4.4.5 seems to be needed.



Appendix A

Projections of dilating sets in
Euclidean spaces

It is the aim of this appendix to revisit the equidistribution results of Randol [162]
and Strichartz [201] mentioned in Section 2.1.1, through the notions of Rajchman
measure and Fourier dimension. In so doing, and pro�ting from an extensive body of
literature which has recently developed around the two topics, we provide additional
classes of examples to which the results of [162] and [201] apply, in their qualitative
as well as in their quantitative versions.

A.1 Rajchman measures and non-e�ective equidis-
tribution

We recall the setting introduced in Section 2.1.1. Fix an integerd � 1, and consider
a Borel probability measure� on Rd. For a vector x 2 Rd, we denote byjxj its
Euclidean norm. For anyt 2 R> 0, de�ne the homothety ht : Rd ! Rd asht (x) = tx
for any x 2 Rd. Let Td = Rd=Zd be the d-dimensional torus, � : Rd ! Td the
canonical covering map. We indicate withmTd the Haar probability measure onTd.
For any t > 0, we let � t be the push-forward of the measure� under the homothety
ht and mt its projection onto Td, that is,

mt (A) = f x 2 Rn : tx + Zd 2 Ag ; A � Td Borel :

We are concerned with the weak� limits of the probability measuresmt as t tends
to in�nity; speci�cally, we shall determine conditions under which themt equidis-
tribute, namely converge towards the uniform measuremTd . As is well-known (see,
for instance, [53, Sec. 4.4]), the Fourier transform proves to be a highly e�ective
analytic tool in dealing with equidistribution problems on tori.
For any complex Borel measure� on Rd, the Fourier transform �̂ of � is de�ned as
the function �̂ : Rd ! C given by

�̂ (x) =
Z

Rd
e� 2�ix �yd� (y) ; x 2 Rd;

152
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wherex � y indicates the Euclidean scalar product of the vectorsx; y 2 Rd; a straigh-
forward consequence of dominated convergence is that�̂ is a bounded continuous
function.

We shall now examine, for an appropriate class of continuous functionsf de�ned on
Td, the discrepancy �

�
�
�
�

Z

Td
f dmt �

Z

Td
f dmTd

�
�
�
�
�

for large values oft. For any continuous function f : Td ! C, we denote by
f̂ : Zd ! C its Fourier transform, de�ned as

f̂ (N ) =
Z

Td
f (y + Zd)e� 2�iN �(y+ Zd )dmTd (y + Zd) ; N 2 Zd :

The well-known Riemann-Lebesgue lemma (cf. [114]) gives thatf̂ vanishes at in�n-
ity.
Suppose that the Fourier series

X

N 2 Zd

f̂ (N )e2�iN �(x+ Zd )

converges towardsf (x) uniformly in x 2 Td; this is the case, for instance, iff is
of classC d+1 on Td, as then jf̂ (N )j decays at least asjN j � (d+1) as jN j ! 1 (cf.
[64, Thm. 8.22]), which in turn implies that the in�nite sum

P
N 2 Zd j f̂ (N )j converges.

Fix now somet > 0: dominated convergence gives
Z

Td
f dmt �

Z

Td
f dmTd =

X

N 2 Zd

f̂ (N )

 Z

Td
e2�iN �(x+ Zd )dmt (x + Zd)

�
Z

Td
e2�iN �(x+ Zd ) dmTd (x + Zd)

!

:

On the one hand, we have the well-known orthogonality relations for unitary char-
acters Z

Td
e2�iN �(x+ Zd )dmTd (x + Zd) = 0 ; N 2 Zd n f 0g ;

on the other hand, the di�erence
Z

Td
e2�iN �(x+ Zd )dmt (x + Zd) �

Z

Td
e2�iN �(x+ Zd ) dmTd (x + Zd)

vanishes forN = 0. Hence we obtain
Z

Td
f dmt �

Z

Td
f dmTd =

X

N 2 Zd nf 0g

f̂ (N )
Z

Td
e2�iN �x+ Zd

dmt (x + Zd) :

Unravelling the de�nition of the measuremt , we may express
Z

Td
e2�iN �(x+ Zd )dmt (x + Zd) =

Z

Rd
e2�iN �xd� t (x)

=
Z

Rd
e2�iN �(tx )d� (x) =

Z

Rd
e� 2�i (� tN )�xd� (x)

= �̂ (� tN )
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for any N 2 Zd. Therefore we conclude that
Z

Td
f dmt �

Z

Td
f dmTd =

X

N 2 Zd nf 0g

f̂ (N )�̂ (� tN ) : (A.1.1)

Recall now from Section 2.1.1 that we say that the Fourier transform of a Borel
probability measure� on Rd decays on rays iflim t !1 �̂ (tx ) = 0 for any x 2 Rd nf 0g.
If �̂ decays on rays andf̂ 2 `1(Z) (which is stronger than what we are currently
assuming onf̂ , but is again ful�lled if f 2 C d+1 (Td)), then from (A.1.1) we deduce,
applying dominated convergence,

lim
t !1

Z

Td
f dmt �

Z

Td
f dmTd = lim

t !1

X

N 2 Zd nf 0g

f̂ (N )�̂ (� tN )

=
X

N 2 Zd nf 0g

f̂ (N ) lim
t !1

�̂ (� tN ) = 0

An elementary application of Stone-Weierstrass' theorem (cf. [64, Thm. 4.51]) gives
that smooth functions are dense in the space of continuous functions onTd; in light
of this, the convergence Z

Td
f dmt

t !1�!
Z

Td
f dmTd

extends readily to all continuous functionsf . We have thus proved Theorem 2.1.3:
if �̂ decays on rays, then the measuresmt obtained from� by dilation and projection
equidistribute insideTd.

Ostensibly, a large class of probability measures satisfying the assumption of decay
on rays consists of those whose Fourier transform vanishes at in�nity.

De�nition A.1.1. A Rajchman measure onRd is a complex Borel measure� whose
Fourier transform �̂ vanishes at in�nity: lim jx j!1 �̂ (x) = 0 .

Although a proper study of the class of measures singled out in De�nition A.1.1 only
began with Rajchman in the twenties, it is fair to claim that their importance arose
with Riemann's celebrated theorem on the decay of Fourier coe�cients of periodic
functions on the real line, which represents the subject of his Habilitation [176] dis-
cussed in Göttingen in 1854. Riemann's result was subsequently re�ned by Lebesgue
in [114], and became known as the Riemann-Lebesgue Lemma ever since. In the
context of Fourier analysis on the Euclidean spaceRd, it amounts to the state-
ment that any complex Borel measure onRd which is absolutely continuous with
respect to the Lebesgue measure is Rajchman; equivalently, the Fourier transform
of any Lebesgue-integrable function onRd vanishes at in�nity (for a proof see, for
instance, [64, Thm. 8.22]).
For a historical account of developments around Rajchman measures, the reader is
referred to the excellent survey [132]; a comprehensive treatment of the connection
to problems of uniqueness of Fourier series, which has always been the main impetus
propelling the study of such measures, can be found in [101]. Here we shall con�ne
ourselves to a list of notable examples, serving the purpose of illustration of some
instances of equidistribution as in Theorem 2.1.3, several of which where unknown
at the time it was proven.
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(1) As we already pointed out, measures which are absolutely continuous with
respect to the Lebesgue measure are Rajchman. By way of example, the
progressive dilations of a bounded Borel subset ofRd with non-empty interior
equidistribute on the torusTd.

(2) If C � Rd is a compact Riemannian submanifold, then the natural volume
measure onC is not necessarily a Rajchman measure, as obstacles deriving
from curvature may arise. For instance, if� 1 and � 2 are Q-linearly dependent
real numbers andv = ( � 1; � 2) 2 Rd, then the segment

(0; 1)v = f rv : r 2 (0; 1)g

does not equidistribute under dilation1 on T2, as it stays con�ned to a proper
one-dimensional subtorus. More generally, ifC is contained in a proper ratio-
nal a�ne subspace2, then equidistribution fails; a fortiori , the corresponding
volume measure is not a Rajchman measure.

On the positive side, the volume measure on any compact Riemannian hyper-
surface whose Gaussian curvature is nowhere vanishing is a Rajchman measure;
this is already a (mild) generalization of the class of examples treated by Theo-
rem 2.1.1, see also related comments in Section A.2. More generally, the same
is true whenever at each point there exists at least one non-vanishing principal
curvature (a result due to Littman [127]). For more general submanifolds, a
su�cient condition to require is that they have a �nite order of contact 3 with
any a�ne hyperplane (cf. [197, Chap. VIII, Sec. 3]).

(3) The Fourier decay properties of measures supported on fractal sets have at-
tracted considerable attention over the last few decades, in particular in con-
nection with the problem of estimating Hausdor� dimensions (see [145, 146]).
We review the current knowledge on self-similar, or more generally self-a�ne
measures. LetF = ( Fj ) j 2 J be a �nite set of a�ne contractions of Rd and
p = ( pj ) j 2 J a probability vector, that is, pj 2 R> 0 for any j 2 J and
P

j 2 J pj = 1. There exists a unique Borel probability measure� on Rd such
that

� =
X

j 2 J

pj (� � F � 1
j ) ;

called the self-a�ne measure determined by the iterated function systemF
and the vector p (see [91]). It support coincides with the unique non-empty
compact subsetK of Rd satisfying

K =
[

j 2 J

Fj (K ) :

1It is well-known that the dilations of a segment (0; 1)v � Rd, where v = ( � 1; : : : ; � d) 2 Rd,
equidistribute on Td if and only if the coordinates � i are linearly independent over Q; see, for
instance, [105, Sec. 1.4].

2We say that an a�ne subspace is rational if the R-linear subspace of directions it identi�es is
de�ned over Q (cf. [139, Chap. I, Sec. 0]).

3If C is real-analytic, the condition is equivalent to C not lying inside any proper a�ne hyper-
plane.
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Examples of Rajchman measures among those are (cf. [119, 120] and the ref-
erences therein):

(a) Cantor-Lebesgue measures supported on middle-� Cantor sets, for
0 < � < 1=2 such that � � 1 is not a Pisot4 number;

(b) Bernoulli convolutions5 � � for parameters� such that � � 1 is not a Pisot
number;

(c) self-similar measures onR, whose support is not a singleton, arising
from an iterated function system of similarities with at least two non-
commensurable contracting ratios (see [120, Thm. 1.2]);

(d) self-a�ne measures on Rd (d > 1), whose support is not a singleton,
arising from an iterated function system whose linear parts generate a
proximal totally irreducible subgroup ofGLd(R) (see [119, Thm. 1.1]).

We bring this section to an end by observing that interesting examples abound
of non-Rajchman measures whose Fourier transform decays on rays, and whose
dilations therefore equidistribute in the torus. A simple but remarkable application
of the Riemann-Lebesgue Lemma yields decay on rays for the Fourier transform
of any Borel probability measure� on Rd whose projection to every line through
the origin is absolutely continuous with respect to the one-dimensional Lebesgue
measure ([201, Lem. 2]). The relevance of this condition resides in the fact that,
as opposed to the Rajchman and the decay-on-rays properties, it is stable under
normalized restrictions of the measure.

A.2 Fourier dimension and e�ective equidistribu-
tion

The argument presented in the foregoing section is manifestly amenable to a quan-
titative re�nement, provided that a deeper knowledge of the properties at in�nity of
the Fourier transform of the starting measure� is available. Speci�cally, it is bene-
�cial to have a way of measuring the rate of decay of̂� at in�nity. This is a�orded
by the notion of Fourier dimension of a complex measure (cf. [55]), to which we now
turn.
First, a clari�cation about notation is in order: if � and  are functions de�ned
on Rd taking non-negative real values, we adopt the conventional Landau notation
� (x) = O( (x)) to signify that there exist C; R0 2 R> 0 such that � (x) � C (x) for
any x 2 Rd satisfying jxj � R0.

4A real algebraic number� > 1 is called a Pisot number if all its Galois conjugates are less than
1 in absolute value.

5The Bernoulli convolution � � is de�ned as the law of the random variable
P

n � 1 X n � n , where
(X n )n � 1 is a sequence of independent random variables withP(X n = � 1) = 1=2.
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De�nition A.2.1. Let � be a complex Borel measure onRd. The Fourier dimension
of � is de�ned as

dimF (� ) = supf s 2 R� 0 : j�̂ (� )j = O(j� j � s=2)g : (A.2.1)

We also de�ne the Fourier dimensiondimF (A) of a setA � Rd as

dimF (A) = supf dimF (� ) : � Borel probability measure

compactly supported insideAg :
(A.2.2)

The Fourier dimension of a set or a measure is intimately tied to their fractal dimen-
sionality features by means of the classical Frostman's lemma (see [145, Thm. 8.8]).
Recall that the Hausdor� dimension dimH (A) of a set A � Rd is de�ned as the
in�mum of all r 2 R� 0 for which the following holds: for any" > 0 there exist a
sequence ofE i � Rd with

A �
[

i 2 N

E i and
X

i 2 N

diam(E i )r < " ;

where diam(E) is the Euclidean diameter of a subsetE � Rd. It is notoriously hard,
in general, to establish lower bounds for the Hausdor� dimension of self-similar or
more general irregular sets; one of the most powerful tools in this regard comes from
geometric measure theory, and consists in showing that the setA under consideration
supports a �nite measure� such that

� (B (x; r )) � r s ; x 2 A; r > 0; (A.2.3)

denoting B(x; r ) the closed Euclidean ball od radiusr centered atx. Under such a
circumstance, [145, Thm. 8.8] gives thatdimH (A) � s.
The condition in (A.2.3) is closely related to �niteness of thes-energy of� , de�ned
as

I s(� ) =
Z

Rd

Z

Rd

1
jx � yjs

d� (x) d� (y) :

An application of Parseval's identity for Fourier transforms allows to express the
energy integralsI s(� ) in terms of the Fourier transform �̂ ; speci�cally, there exists
a constant  (d; s) such that, for any �nite positive compactly supported measure�
and any s > 0, it holds

I s(� ) =  (d; s)
Z

Rd
j �̂ (x)j2jxjs� d dx ;

we refer to [146, Thm. 3.10] for a proof of this statement. Combining the consider-
ations outlined above, we arrive at the the inequality(cf. [145, Ÿ12.17])

dimF (A) � dimH (A) ; (A.2.4)

holding for any Borel subsetA � Rd. If equality holds in (A.2.4), then A is called
a Salem set6.

6Salem sets were �rst introduced by Kahane and Salem in the monograph [97].
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Before embarking on a discussion of Salem sets in connection to our equidistribu-
tion question, we may now formulate and prove a generalization of Theorem 2.1.1
(in particular, of the quantitative version in Remark 2.1.2(a)) based upon De�ni-
tion A.2.1.

Theorem A.2.2. Let � be a Borel probability measure onRd, s < dimF (� ) a
nonnegative real number. Then there exists a constantCs;� depending only ons and
� , such that, for any continuous functionf : Td ! C whose Fourier transform is in
`1(Zd), we have

�
�
�
�
�

Z

Td
f dmt �

Z

Td
f dmTd

�
�
�
�
�
� Cs;�



 f̂





`1 (Zd )
t � s=2 (A.2.5)

for every t � 1.

Proof. Let s < dimF (� ) be a nonnegative real number. By the de�nition of Fourier
dimension in (A.2.1), there exist real constantsCs;� and R(s;� )

0 , depending only on
s and on � , such that

j�̂ (� )j � Cs;� j� j � s=2 (A.2.6)

for any � 2 Rn such that j� j � R(s;� )
0 . As �̂ is continuous, we may and shall assume

that R(s;� )
0 = 1 upon replacingCs;� with supf Cs;� ; k�̂ k1 g, where �̂ 1 is the uniform

norm of �̂ .
We now start again from (A.1.1), with f : Td ! C being a continuous function
whose Fourier transformf̂ is in `1(Zd), and make use of the upper bound in (A.2.6):
we have, fort � 1,

�
�
�
�
�

Z

Td
f dmt �

Z

Td
f dmTd

�
�
�
�
�
�

X

N 2 Zd nf 0g

j f̂ (N )jj �̂ (� tN )j

� Cs;� t � s=2
X

N 2 Zd nf 0g

j f̂ (N )jjN j � s=2

� Cs;�



 f̂





`1 (Zd )
t � s=2 ;

(A.2.7)

which is what we wanted to show.

Remark A.2.3. The equidistribution rate in (A.2.5) is easily seen to remain valid
for any continuous f : Td ! C whose Fourier transform is in`p(Zd) for p < 2d

2d� s .
Indeed, if q denotes the Hölder conjugate ofp, then q > 2d

s and thus, applying
Hölder's inequality in (A.2.7), we get

�
�
�
�
�

Z

Td
f dmt �

Z

Td
f dmTd

�
�
�
�
�
� Cs;� t � s=2



 f̂





`p (Zd )

 
X

N 2 Zd nf 0g

jN j � qs=2

! 1=q

;

where the in�nite sum between parentheses converges sinceqs
2 > d .
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In loose terms, Theorem A.2.2 states that progressively dilating Borel subsets of
Fourier dimensiond equidistribute when projected to the torus, with a polynomial
rate whose exponent is arbitrarily close tod=2 (and might be taken equal tod=2 if
the suprema in (A.2.6) and (A.2.2) are attained).
Revisiting the classes of examples presented in Section A.1 through a quantitative
viewpoint, we mention the following:

(a) if � is the renormalized Lebesgue measure on the open unit ball inRd, then
the measuresmt equidistribute with rate t � (d+1) =2: indeed, the formula for
the Fourier transform of radial functions combined with standard asymptotic
estimates for Bessel functions leads readily to the boundj�̂ (� )j = O(j� j � (d+1) =2)
(see [146, Sec. 3.3] for the details);

(b) if � is the renormalized surface measure on a compact Riemannian hypersur-
face C � Rd with nowhere vanishing Gaussian curvature, then
j�̂ (� )j = O(j� j � (d� 1)=2), so that the mt equidistribute with rate t � (d� 1)=2. More
generally, if at each point ofC at least k of the principal curvatures do not
vanish (1 � k � d � 1), then j�̂ (� )j � j � j � k=2 (see [197, Chap. VIII, Sec. 3] for
these and related results);

(c) Strichartz conducted in [202] the �rst extensive study of the Fourier decay
properties of self-similar measures. However, his methods only provide e�ec-
tive decay rates for spherical averages. Uniform rates of decay are substantially
harder to achieve. In dimensiond = 1, only logarithmic bounds are known
(cf. [120, Thm. 1.3] and [209, Cor. 1.6]) in explicit examples; nevertheless,
polynomial Fourier decay does hold for self-similar measures after removing
an exceptional set of parameters of zero Hausdor� dimension (see [196]). For
d > 1, Li and Sahlsten established in [119] a power decay for the Fourier trans-
form of a self-a�ne measure determined by an iterated function system whose
linear parts generate a Zariski-dense subgroup ofGLd(R) (more generally, a
subgroup whose Zariski closure inGLd(R) is a connectedR-split reductive Lie
group).

Finally, a few more words about other deterministic and random examples of Salem
sets to which Theorem A.2.2 applies are in order. As far as deterministic construc-
tions of Salem sets are concerned, Kaufman proved in [100] that the set of� -well
approximable numbers

WA(� ) = f x 2 R : kqxk � q� � for in�nitely many q 2 Ng ;

where kyk denotes the distance ofy 2 R to the nearest integer, is a Salem set for
any � � 1. Its Hausdor� dimension is known to be equal to 2

1+ � by a celebrated
theorem of Jarnik and Besicovitch ([95, 17]). Remarkable constructions of Salem
sets of random origin were provided by Kahane in [96]: by way of example, we
mention that compact segments of Brownian trajectories inRd (d � 2) are almost
surely Salem sets of Hausdor� dimension two.



Bibliography

[1] H. Abels, G. Margulis and A. Soifer,Semigroups containing proximal linear
maps, Israel J. Math. 91 (1995), 1�30.

[2] R.A. Adams.Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic
Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[3] T. Aubin. Nonlinear analysis on manifolds. Monge-Ampère equations.
Grundlehren der mathematischen Wissenschaften, 252. Springer-Verlag, New
York, 1982.

[4] L. Auslander, J. Green and F. Hahn.Flows on homogeneous spaces. Annals
of Mathematics Studies, No. 53. Princeton University Press, Princeton, N.J.,
1963.

[5] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of
Math. 48 (1947), 568�640.

[6] M.B. Bekka, M. Mayer. Ergodic theory and topological dynamics of group ac-
tions on homogeneous spaces. London Mathematical Society Lecture Note Se-
ries, 269. Cambridge University Press, Cambridge, 2000.

[7] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Func. Anal.
7 (1997), 1�47.

[8] Y. Benoist, H. Oh,E�ective equidistribution of S-integral points on symmetric
varieties, Ann. Inst. Fourier 62 (2012), 1889�1942.

[9] Y. Benoist, J.F. Quint, Mesures stationnaires et fermés invariants des espaces
homogèenes, Ann. of. Math. 174 (2011), 1111�1162.

[10] Y. Benoist, J.F. Quint, Stationary measures and invariant subsets of homoge-
neous spaces (II), J. Amer. Math. Soc.26 (2013), 659�734.

[11] Y. Benoist, J.F. Quint, Stationary measures and invariant subsets of homoge-
neous spaces (III), Ann. of. Math. 178 (2013), 1017�1059.

[12] Y. Benoist, J.F. Quint, Central limit theorem for linear groups, Ann. Probab.
44 (2016), 1308�1340.

160



Bibliography 161

[13] Y. Benoist, J.F. Quint, Central limit theorem on hyperbolic groups, Izv. Akad.
Nauk Ser. Mat. 80 (2016), 3�23.

[14] V. Bergelson, F. Richter,Dynamical generalizations of the Prime Number The-
orem and disjointness of additive and multiplicative semigroup actions, Duke
Math. J. 171 (2022), 3133�3200.

[15] N. Bergeron. The spectrum of hyperbolic surfaces. Appendix C by Valentin
Blomer and Farrell Brumley. Translated from the 2011 French original by Brum-
ley. Universitext. Springer, Cham; EDP Sciences, Les Ulis, 2016.

[16] J. Bernoulli. The art of conjecturing. Translated from the Latin and with
an introduction and notes by Edith Dudley. Johns Hopkins University Press,
Baltimore, MD, 2006.

[17] A.S. Besicovitch,Sets of fractional dimensions IV: On rational approximation
to real numbers, J. Lond. Math. Soc. 9 (1998), 126�131.

[18] P. Billingsley.Convergence of probability measures. Second edition. Wiley Series
in Probability and Statistics: Probability and Statistics. A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1999.

[19] M. Bjorklund, Central limit theorem for Gromov hyperbolic groups, J. Theo-
ret. Probab. 23 (2010), 871�887.

[20] A. Borel. Automorphic forms on SL2(R ). Cambridge Tracts in Mathematics,
130. Cambridge University Press, Cambridge, 1997.

[21] A. Boulanger, P. Mathieu, C. Sert and A. Sisto,Large deviations for random
walks on hyperbolic spaces, arXiv:2008.02709 (2020).

[22] N. Bourbaki. Éléments de mathématique, Algèbre. Chapitres 1 à 3.Hermann,
Paris, 1970.

[23] B.H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22
(2012), 66 pp.

[24] H. Brezis. Functional analysis, Sobolev spaces and Partial Di�erential Equa-
tions. Universitext. Springer, New York, 2011.

[25] M.R. Bridson, A. Hae�iger. Metric Spaces of Non-Positive Curvature.
Grundlehren der mathematischen Wissenschaften, 319. Springer-Verlag, Berlin,
1999.

[26] M. Brin, G. Stuck. Introduction to dynamical systems. Cambridge University
Press, Cambridge, 2002.

[27] A. Bufetov, G. Forni, Limit theorems for horocycle �ows, Ann. Sci. Éc. Norm.
Supér.47 (2014), 851�903.



162 Bibliography

[28] M. Burger. Horocycle �ow on geometrically �nite surfaces, Duke Math. J. 61
(1990), 779�803.

[29] P. Buser. Geometry and spectra of compact Riemann surfaces. Progress in
Mathematics, 106. Birkhäuser Boston, Inc., Boston, MA, 1992.

[30] H. Cherno�, A measure of asymptotic e�ciency for tests of a hypithesis based
on the sum of observations, Ann. Math. Statist. 23 (1952), 493�507.

[31] P. Colognese, M. Pollicott,The growth and distribution of large circles on trans-
lation surfaces, arXiv:2107.14058 (2021).

[32] E. Corso,Large deviations for random walks on free products of �nitely gener-
ated groups, Electron. J. Probab.26 (2021), 1�22.

[33] E. Corso,Large deviations for irreducible random walks on relatively hyperbolic
groups, arXiv:2110.14592 (2021).

[34] H. Cramér. Sur un nouveau théorème�limite de la théorie des probabilités. Ac-
tualités Scienti�ques et Industrielles, Colloque consacré à la théorie des proba-
bilités, vol. 763. Hermann, Paris, 1938.

[35] S.G. Dani, Invariant measures and minimal sets of horospherical �ows, In-
vent. Math. 64 (1981), 357�385.

[36] S.G. Dani, J. Smillie, Uniform distribution of horocycle orbits for Fuchsian
groups, Duke Math. J. 51 (1984), 185�194.

[37] J. Delsarte,Sur le Gitter Fuchsien, C. R. Acad. Sci. Paris214 (1942), 147�149.

[38] M. Denker, W. Philipp, Approximation by Brownian motion for Gibbs measures
and �ows under a function, Ergodic Theory Dynam. Systems4 (1984), 541�552.

[39] A. Dembo, O. Zeitouni.Large deviations techniques and applications. Stochastic
Modelling and Applied Probability, 38. Springer-Verlag, Berlin, 2010.

[40] D. Dolgopyat, On decay of correlations in Anosov �ows, Ann. of Math. 147
(1998), 357�390.

[41] D. Dolgopyat, O. Sarig, Temporal distributional limit theorems for dynamical
systems, J. Stat. Phys. 166 (2017), 680�713.

[42] W. Duke, Z. Rudnick and P. Sarnak,Density of integer points on a�ne homo-
geneous spaces, Duke Math. J. 71 (1993), 143�179.

[43] R. Durrett. Probability: theory and examples. Fourth Edition. Cambridge Series
in Statistical and Probabilistic Mathematics, 31. Cambridge University Press,
Cambridge, 2010.



Bibliography 163

[44] M. Dussaule,Local limit theorems in relatively hyperbolic groups I: rough esti-
mates, Ergodic Theory Dynam. Systems (2021), 1�41,doi.10.1017/etds.2021.7.

[45] M. Dussaule,Local limit theorems in relatively hyperbolic groups II: the non-
spectrally degenerate case, arXiv:2004.13986 (2020).

[46] S. Dyatlov, F. Faure and C. Guillarmou,Power spectrum of the geodesic �ow
on hyperbolic manifolds, Anal. PDE 8 (2015), 923�1000.

[47] G.K. Eagleson, Some simple conditions for limit theorems to be mixing,
Teor. Verojatnost. i Primenen.21 (1976), 653�660.

[48] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. 111
(1980), 435�476.

[49] S. Edwards. On the rate of equidistribution of expanding translates of horo-
spheres in� nG. Comment. Math. Helv. 96 (2021), 275�337.

[50] S. Edwards, On the equidistribution of translates of orbits of symmet-
ric subgroups in� nG, available at https://sites.google.com/view/samedwards,
preprint (2018).

[51] M. Einsiedler, A. Katok and E. Lindenstrauss,Invariant measures and the set
of exceptions to Littlewood's conjecture, Ann. of Math. 164 (2006), 513�560.

[52] M. Einsiedler, G. Margulis and A. Venkatesh,E�ective equidistribution of closed
orbits of semisimple groups on homogeneous spaces, Invent. Math. 177 (2009),
137�212.

[53] M. Einsiedler, T. Ward. Ergodic theory with a view towards number theory.
Graduate Texts in Mathematics, 259. Springer-Verlag London, Ltd., London,
2011.

[54] M. Einsiedler, T. Ward,Homogeneous dynamics: a study guide, in Introduction
to modern mathematics. Advanced lectures in mathematics. International Press
of Boston, Somerville, MA, 2015.

[55] F. Ekström, T. Persson and J. Schmeling,On the Fourier dimension and a
modi�cation , J. Fractal Geom.2 (2015), 309�337.

[56] D.B.A Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson and
W.P. Thurston. Word Processing in Groups. Jones and Bartlett Publishers,
Boston, MA, 1992.

[57] P. Erdös, M. Kac,The Gaussian law of errors in the theory of additive number
theoretic functions, Amer. J. Math. 62 (1940), 738�742.

[58] A. Eskin, E. Lindenstrauss, Zariski dense random walks on homoge-
neous spaces, http://www.math.uchicago.edu/ eskin/RandomWalks/paper.pdf,
preprint (2018).



164 Bibliography

[59] A. Eskin, C. McMullen, Mixing, counting and equidistribution in Lie groups,
Duke Math. J. 71 (1993), 181�209.

[60] A. Eskin, S. Mozes and N. Shah,Unipotent �ows and counting lattice points on
homogeneous varieties, Ann. of Math. 143 (1996), 253�299.

[61] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 810�840.

[62] H.M. Farkas, I. Kra. Riemann surfaces. Second Edition. Graduate Texts in
Mathematics, 71. Springer-Verlag, New York, 1992.

[63] L. Flaminio, G. Forni, I nvariant distributions and time averages for horocycle
�ows, Duke Math. J. 119 (2003), 465�536.

[64] G.B. Folland. Real Analysis. Modern techniques and their applications. Second
Edition. Pure and Applied Mathematics (New York). A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1999.

[65] G.B. Folland. A course in abstract harmonic Analysis. Second Edition. Text-
books in Mathematics. CRC Press, Boca Raton, FL, 2016.

[66] G. Forni, Ruelle resonances from cohomological equations, arXiv:2007.03116
(2020).

[67] H. Furstenberg.The unique ergodicity of the horocycle �ow. Recent advances
in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New
Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), pp. 95�115. Lecture
Notes in Math., Vol. 318. Springer, Berlin, 1973.

[68] H. Furstenberg.Recurrence in ergodic theory and combinatorial number theory.
M.B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981.

[69] H. Furstenberg. Sti�ness of group actions. Lie groups and ergodic theory
(Mumbai, 1996), 105�117. Tata Inst. Fund. Res. Stud. Math., 14. Tata
Inst. Fund. Res., Bombay, 1998.

[70] H. Furstenberg, H. Kesten,Products of random matrices, Ann. Math. Stat. 31
(1960), 457�469.

[71] I. Gelfand, S.V. Fomin,Geodesic �ows on manifolds of constant negative cur-
vature, Usp. Math. Nauk. 7 (1952), 118�137.

[72] E. Ghys, P. de la Harpe.Sur les groupes hyperboliques d'après Mikhael Gromov.
Progress in Mathematics, 83. Birkhaüser Boston, Boston, MA, 1990.

[73] A. Gorodnik, A. Nevo. The ergodic theory of lattice subgroups. Annals of
Mathematics Studies, 172. Princeton University Press, Princeton, NJ, 2010.



Bibliography 165

[74] W.H. Gottschalk, G.A. Hedlund.Topological dynamics.American Mathemati-
cal Society Colloquium Publications, Vol. 36. American Mathematical Society,
Providence, R.I., 1955.

[75] S. Gouëzel,Local limit theorem for symmetric random walks in Gromov-
hyperbolic groups, J. Amer. Math. Soc.27 (2014), 893�928.

[76] B. Green, T. Tao,The quantitative behaviour of polynomial orbits on nilmani-
folds, Ann. of Math. 175 (2012), 465�540.

[77] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes
Études Sci. Publ. Math. 53 (1981), 53�73.

[78] M. Gromov. Hyperbolic groups. Essays in group theory, 75�263.
Math. Sci. Res. Inst. Publ., 8. Springer, New York, 1987.

[79] Y. Guivarc'h, Sur la loi des grands nombres et le rayon spectral d'une marche
aléatoire, Astérisque74 (1980), 47�98.

[80] B.M. Gurevich, The entropy of horocycle �ows, Dokl. Akad. Nauk SSSR136
(1961), 768�770.

[81] P. de la Harpe.Topics in Geometric Group Theory. Chicago Lectures in Math-
ematics, The University of Chicago Press, Chicago, IL, 2000.

[82] B. Hasselblatt.Hyperbolic dynamical systems. Handbook of dynamical systems,
Vol. 1A, 239�319. North-Holland, Amsterdam, 2002.

[83] B. Hasselblatt, A. Katok.Principal structures. Handbook of dynamical systems,
Vol. 1A, 1�203. North-Holland, Amsterdam, 2002.

[84] E. Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities.
Courant Lecture Notes in Mathematics, 5. New York University, Courant In-
stitute of Mathematical Sciences, New York. American Mathematical Society,
Providence, RI, 1999.

[85] G. Hedlund,Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936),
530�542.

[86] G. Hedlund,The dynamics of geodesic �ows, Bull. Amer. Math. Soc. 45 (1939),
241�260.

[87] M.R. Herman,Sur la conjugaison di�érentiable des di�éomorphismes du cercleà
des rotations, Publ. Math. Inst. Hautes Études Sci.49 (1979), 5�233.

[88] E. Hopf, Fuchsian groups and ergodic theory, Trans. Amer. Math. Soc. 39
(1936), 299-314.



166 Bibliography

[89] E. Hopf, Statistik der geodätischen Linien in Mannigfalitgkeiten negativer
Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl.91 (1939),
261-304.

[90] R.E. Howe, C.C. Moore, Asymptotic properties of unitary representations,
J. Funct. Anal. 32 (1979), 72�96.

[91] J.E. Hutchinson,Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981),
713�747.

[92] A. Ivi¢, E. Krätzel, M. Kühleitner and W.G. Nowak. Lattice points in large re-
gions and related arithmetic functions: recent developments in a very classical
topic. Elementare und analytische Zahlentheorie, 89�128. Schr. Wiss. Ges. Jo-
hann Wolfgang Goethe Univ. Frankfurt am Main, 20. Franz Steiner Verlag
Stuttgart, Stuttgart, 2006.

[93] H. Iwaniec. Spectral methods of automorphic forms. Second edition. Graduate
Studies in Mathematics, 53. American Mathematical Society, Providence, RI;
Revista Matemática Iberoamericana, Madrid, 2002.

[94] L. Ji, A summary of the work of Gregory Margulis, Pure App. Math. Q. 4
(2008), no. 1, Special Issue: In honor of Grigory Margulis. Part 2, 1�69.

[95] V. Jarník, Über die simultanen diophantischen Approximationen, Math. Zeit.
33 (1931), 505�543.

[96] J.-P. Kahane, Some random series of functions. Second Edition. Cambridge
Studies in Advanced Mathematics, 5. Cambridge University Press, Cambridge,
1985.

[97] J.-P. Kahane, R. Salem.Ensembles parfaites et séries trigonométriques. Actu-
alités Scienti�ques et Industrielles, No. 1301. Hermann, Paris, 1963.

[98] A. Katok, B. Hasselblatt. Introduction to the modern theory of dynamical sys-
tems. With a supplementary chapter by Katok and Leonardo Mendoza. Ency-
clopedia of Mathematics and its Applications, 54. Cambridge University Press,
Cambridge, 1995.

[99] S. Katok.Fuchsian Groups. Chicago Lecture Notes in Mathematics. University
of Chicago Press, Chicago, IL, 1992.

[100] R. Kaufman,On the theorem of Jarnik and Besicovitch, Acta Arith. 39 (1981),
265�267.

[101] A.S. Kechris, A. Louveau.Descriptive set theory and the structure of sets of
uniqueness. London Mathematical Society Lecture Note Series, 128. Cambridge
University Press, Cambridge, 1987.



Bibliography 167

[102] H. Kesten,Symmetric random walks on groups, Trans. Amer. Math. Soc.92
(1959), 336�354.

[103] J.F.C. Kingman, The ergodic theory of subadditive processes,
J. Roy. Statist. Soc. Ser. B30 (1968), 499�510.

[104] D. Kleinbock, G.A. Margulis,Bounded orbits of nonquasiunipotent �ows on
homogeneous spaces, Amer. Math. Soc. Transl.171 (1996), 141�172.

[105] D. Kleinbock, N. Shah, A. Starkov.Dynamics of subgroup actions on homo-
geneous spaces of Lie groups and applications to number theory. Handbook of
dynamical systems, Vol. 1A, 813�930. North-Holland, Amsterdam, 2002.

[106] A. Klenke.Probability theory. A Comprehensive Course. Second Edition. Uni-
versitext, Springer, London, 2014.

[107] A.W. Knapp. Lie groups beyond an introduction. Second Edition. Progress in
Mathematics, 140. Birkhäuser Boston, Inc., Boston, MA, 2002.

[108] B. Kra, N.A. Shah and W. Sun,Equidistribution of dilated curves on nilman-
ifolds, J. Lond. Math. Soc.98 (2018), 708�732.

[109] S.P. Lalley,Finite range random walks on free groups and homogeneous trees,
Ann. Probab. 21 (1993), 2087�2130.

[110] O.E. Lanford.Entropy and equilibrium states in classical statistical mechanics.
Statistical Mechanics and Mathematics Problems, pp. 1�113. Lecture Notes in
Physics, vol. 20. Springer, Berlin, Heidelberg, 1973.

[111] S. Lang.SL2(R ). Reprint of the 1975 edition. Graduate Texts in Mathematics,
105. Springer-Verlag, New York, 1985.

[112] P.-S. Laplace.Théorie analytique des probabilités. Vol. II.Reprint of the 1820
third edition. Éditions Jacques Gabay, Paris, 1995.

[113] P. Lax, R. Phillips, The asymptotic distribution of lattice points in Euclidean
and non-Euclidean spaces, J. Funct. Anal. 46 (1982), 280-350.

[114] H. Lebesgue,Sur les séries trigonométriques, Ann. Sci. Éc. Norm. Supér.20
(1903), 453�485.

[115] F. Ledrappier.Some asymptotic properties of random walks on free groups.
Topics in probability and Lie groups: boundary theory, 117�152. CRM
Proc. Lecture Notes, 28. Amer. Math. Soc., Providence, RI, 2001.

[116] J.M. Lee.Introduction to Smooth Manifolds.Second Edition. Graduate Texts
in Mathematics, 218. Springer, New York, 2013.

[117] J.M. Lee.Introduction to Riemannian Manifolds. Second Edition. Graduate
Texts in Mathematics, 176. Springer, Cham, 2018.



168 Bibliography

[118] J.-F. Le Gall.Brownian motion, martingales, and stochastic calculus.Trans-
lated from the 2013 French edition. Graduate Texts in Mathematics, 274.
Springer, Cham, 2016.

[119] J. Li, T. Sahlsten,Fourier transform of self-a�ne measures, Adv. in Math.
374 (2022), 107349.

[120] J. Li, T. Sahlsten, Trigonometric series and self-similar sets,
J. Eur. Math. Soc. 24 (2022), 341�368.

[121] E. Lindenstrauss,Rigidity of multiparameter actions, Israel J. Math. 149
(2005), 199�226.

[122] E. Lindenstrauss,Invariant measures and arithmetic quantum unique ergod-
icity , Ann. of Math. 163 (2006), 165-219.

[123] E. Lindenstrauss.Some examples how to use measure classi�cation in number
theory. Equidistribution in number theory, an introduction, 261�303. NATO
Sci. Ser. II Math. Phys. Chem., 237. Springer, Dordrecht, 2007.

[124] E. Lindenstrauss.Recent progress on rigidity properties of higher rank diag-
onalizable actions and applications. Dynamics, geometry, number theory�the
impact of Margulis on modern mathematics, 362�425. Univ. Chicago Press,
Chicago, IL, 2022.

[125] E. Lindenstrauss, A. Mohammadi,Polynomial e�ective density in quotients of
H3 and H2 � H2, arXiv:2112.14562 (2021).

[126] E. Lindenstrauss, A. Mohammadi and Z. Wang,Polynomial e�ective equidis-
tribution , arXiv:2202.11815 (2022).

[127] W. Littman, Fourier transform of surface-carried measures and di�erentiabil-
ity of surface averages. Bull. Amer. Math. Soc. 69 (1963), 766-770.

[128] C. Liverani, On contact Anosov �ows, Ann. of Math. 159 (2004), 1275�1312.

[129] A. Livsic, Certain properties of the homology ofY-systems, Mat. Zametki 10
(1971), 555�564.

[130] R.C. Lyndon,Grushko's theorem, Proc. Amer. Math. Soc.16 (1965), 822�826.

[131] R.C. Lyndon, P.E. Schupp. Combinatorial Group Theory. Ergebnisse der
Mathematik und ihrer Grenzgebiete, Band 89. Springer-Verlag, Berlin-New
York, 1977.

[132] R. Lyons.Seventy years of Rajchman measures. Proceedings of the Conference
in Honor of Jean-Pierre Kahane (Orsay, 1993). J. Fourier Anal. Appl. 1995,
Special Issue, 363�377.



Bibliography 169

[133] R. Lyons, Y. Peres. Probability on trees and Networks. Cambridge Series
in Statistical and Probabilistic Mathematics, 42. Cambridge University Press,
New York, 2016.

[134] G.W. Mackey.The theory of unitary group representations. Based on notes by
James M. G. Fell and David B. Lowdenslager of lectures given at the University
of Chicago, Chicago, Ill., 1955. Chicago Lectures in Mathematics. University
of Chicago Press, Chicago, Ill.-London, 1976.

[135] B. Marcus,The horocycle �ow is mixing of all degrees, Invent. Math. 46 (1978),
201�209.

[136] G.A. Margulis,Applications of ergodic theory to the investigation of manifolds
of negative curvature, Funct. Anal. Appl. 4 (1969), 335.

[137] G.A. Margulis.Discrete subgroups and ergodic theory. Number Theory, trace
formulas and discrete groups (Oslo, 1987), 377�398. Academic Press, Boston,
MA, 1989.

[138] G.A. Margulis. Oppenheim conjecture. Fields Medallists' Lectures, 272�327.
World Sci. Ser. 20th Century Math., 5. World Sci. Publ., River Edge, NJ,
1997.

[139] G.A. Margulis. Discrete subgroups of semisimple Lie Groups. Ergebnisse der
Mathematik und ihrer Grenzgebiete, 17. Springer-Verlag, Berlin, 1991.

[140] G.A. Margulis. On some aspects of the theory of Anosov systems.With a
survey by Richard Sharp: Periodic orbits of hyperbolic �ows. Translated from
the Russian by Valentina Vladimirovna Szulikowska. Springer Monographs in
Mathematics. Springer-Verlag, Berlin, 2004.

[141] J. Marklof.Selberg's trace formula: an introduction. Hyperbolic geometry and
applications in quantum chaos and cosmology, 83-119. London Math. Soc. Lec-
ture Note Ser., 397. Cambridge Univ. Press, Cambridge, 2012.

[142] J. Marklof, A. Strömbergsson,Kinetic Theory for the Low-Density Lorentz
Gas, arXiv:1910.04982 (2019).

[143] H. Masur, Y. Minsky, Geometry of the complex of curves. I. Hyperbolicity,
Invent. Math. 138 (1999), 103�149.

[144] P. Mathieu, A. Sisto,Deviation inequalities for random walks, Duke Math. J.
169 (2020), 961�1036.

[145] P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and
Recti�ability . Cambridge Studies in Advanced Mathematics, 44. Cambridge
University Press, Cambridge, 1995.



170 Bibliography

[146] P. Mattila. Fourier analysis and Hausdor� dimension. Cambridge Studies in
Advanced Mathematics, 150. Cambridge University Press, Cambridge, 2015.

[147] A. de Moivre.The doctrine of chance or, a method of calculating the probabil-
ities of events in play. New impression of the second edition, with additional
material Cass Library of Science Classics, No. 1. Frank Class & Co. Ltd., Lon-
don, 1967.

[148] S. Mozes, N. Shah,On the space of ergodic invariant measures of unipotent
�ows, Ergodic Theory Dynam. Systems15 (1995), 149�159.

[149] S. Müller, Recurrence for branching Markov chains, Electron. Com-
mun. Probab. 13 (2008), 576�605.

[150] J.R. Munkres. Topology. Second Edition. Prentice Hall, Inc., Upper Saddle
River, NJ, 2000.

[151] S.B. Myers, N.E. Steenrod,The group of isometries of a Riemannian manifold,
Ann. of Math. 40 (1939), 400�416.

[152] I. Newton. The mathematical principles of natural philopsophy.Vols. I,
II. Translated from the Latin by Andrew Motte. With an introduction by
I. Bernard Cohen. Dawsons of Pall Mall, London, 1968.

[153] K. Ohshika. Discrete groups. Translated from the 1998 Japanese original by
the author. Translations of Mathematical Monographs, 207. Iwanami Series in
Modern Mathematics. American Mathematical Society, Providence, RI, 2002.

[154] D.V. Osin.Relatively hyperbolic groups: instrinsic geometry, algebraic proper-
ties, and algorithmic problems. Mem. Amer. Math. Soc.179 (2006), no. 843,
vi+100pp.

[155] O.S. Parasyuk,Flows of horocycles on surfaces of constant negative curvature,
(Russian) Uspehi Matem. Nauk8 (1953), 125�126.

[156] W. Philipp, W. Stout Almost sure invariance principles for partial sums of
weakly dependent random variables, Mem. Amer. Math. Soc.2 (1975), no. 161,
iv+140pp.

[157] R. Phillips, Z. Rudnick, The circle problem in the hyperbolic plane,
J. Funct. Anal. 121 (1994), 78�116.

[158] H. Poincaré.Les méthodes nouvelles de la mécanique céleste. Tome I. Solutions
périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques.
(French) Dover Publications, Inc., New York, N.Y., 1957.

[159] G. Pólya,Über eine Aufgabe der Wahrscheinlichkeitstheorie betre�end die Ir-
rfahrt im Straÿennetz, Math. Ann. 84 (1921), 149�160.



Bibliography 171

[160] J.F. Quint, Cônes limites des sous-groupes discrets des groupes réductifs sur
un corps local, Transformation groups7 (2002), 247�266.

[161] M.S. Raghunathan.Discrete subgroups of Lie groups. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg,
1972.

[162] B. Randol,The behaviour under projection of dilating sets in a covering space,
Trans. Amer. Math. Soc.285 (1984), 855�859.

[163] J.G. Ratcli�e. Foundations of hyperbolic manifolds. Third Edition. Graduate
Texts in Mathematics, 149. Springer, Cham, 2019.

[164] M. Ratner, The central limit theorem for geodesic �ows onn-dimensional
manifolds of negative curvature, Israel J. Math. 16 (1973), 181�197.

[165] M. Ratner, Factors of horocycle �ows, Ergodic Theory Dynam. Systems2
(1982), 465�489.

[166] M. Ratner, Rigidity of horocycle �ows, Ann. of Math. 115 (1982), 597�614.

[167] M. Ratner, Horocycle �ows, joinings and rigidity of products, Ann. of
Math. 118 (1983), 277�313.

[168] M. Ratner, The rate of mixing for geodesic and horocycle �ows, Ergodic
Theory Dynam. Systems7 (1987), 267�288.

[169] M. Ratner,Strict measure rigidity for unipotent subgroups of solvable groups,
Invent. Math. 101 (1990), 449�482.

[170] M. Ratner,On measure rigidity of unipotent subgroups of semisimple groups,
Acta Math. 165 (1990), 229�309.

[171] M. Ratner,On Raghunathan's measure conjecture, Ann. of Math. 134 (1991),
545�607.

[172] M. Ratner,Raghunathan's topological conjecture and distribution of unipotent
�ows, Duke J. Math. 63 (1991), 235�280.

[173] M. Ratner,Raghunathan's conjectures for Cartesian products of real andp-adic
Lie groups, Duke Math. J. 77 (1995), 275�382.

[174] D. Ravotti, Quantitative equidistribution of horocycle push-forwards of trans-
verse arcs, Enseign. Math.66 (2020), 135�150.

[175] D. Ravotti. Asymptotics and limit theorems for horocycle ergodic integrals à
la Ratner arXiv:2107.02090, (2021).

[176] B. Riemann. Über die Darstellbarkeit einer Function durch eine
trigonometrische Reihe. (Habilitationsschrift, 1854) Abhandlungen der
Königlichen Gesellschaft der Wissenschaften zu Göttingen13, 1868.



172 Bibliography

[177] P. Sarnak,Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. 40 (2003),
441�478.

[178] S. Sasaki,On the di�erential geometry of tangent bundles of Riemannian man-
ifolds, Tohoku Math. J. 10 (1958), 338�354.

[179] S. Sawyer, T. Steger,The rate of excape for anisotropic random walks in a
tree, Probab. Theory Related Fields76 (1987), 207�230.

[180] L. Schwartz.Analyse. Deuxième partie: Topologie générale et analyse fonc-
tionnelle. (French) Collection Enseignement des Sciences, No. 11. Hermann,
Paris, 1970.

[181] A. Selberg,Harmonic analysis and discontinuous groups in weakly symmetric
Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc.
20 (1956), 47�87.

[182] A. Selberg,Equidistribution in discrete groups and the spectral theory of au-
tomorphic forms, https://publications.ias.edu/selberg/section/2491.

[183] Á. Seress.Permutation group algorithms. Cambridge Tracts in Mathematics,
152. Cambridge University Press, Cambridge, 2003.

[184] J.P. Serre. Arbres, Amalgames,SL2. (French) Avec un sommaire anglais.
Rédigé avec la collaboration de Hyman Bass. Astérisque, No. 46. Société Math-
ématique de France, Paris, 1977.

[185] C. Sert.Joint spectrum and Large deviation principles for random products of
matrices. PhD thesis, Université Paris-Saclay, Orsay, 2016.

[186] C. Sert,Joint spectrum and large deviation principle for random matrix prod-
ucts, C. R. Math. Acad. Sci. Paris355 (2017), 718�722.

[187] C. Sert,Large deviation principle for random matrix products, Ann. Probab.
47 (2019), 1335�1377.

[188] N.A. Shah,Limit distributions of expanding translates of certain orbits on
homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci.106 (1996), 105�125.

[189] N.A. Shah,Limiting distributions of curves under geodesic �ow on hyperbolic
manifolds, Duke Math. J. 148 (2009), 251�279.

[190] N.A. Shah,Equidistribution of expanding translates of curves and Dirichlet's
theorem on Diophantine approximation, Invent. Math. 177 (2009), 509�532.

[191] N.A. Shah,Expanding translates of curves and Dirichlet-Minkowski theorem
on linear forms, J. Amer. Math. Soc,23 (2010), 563�589.



Bibliography 173

[192] L. Silberman, A. Venkatesh.Entropy bounds and quantum unique ergodic-
ity for Hecke eigenfunctions on division algebras. Probabilistic methods in ge-
ometry, topology and spectral theory, 171�197. Contemp. Math., 739, Centre
Rech. Math. Proc., Amer. Math. Soc., Providence, RI, 2019.

[193] L. Silberman, A. Venkatesh,On quantum unique ergodicity for locally sym-
metric spaces, Geom. Func. Anal.17 (2007), 960�998.

[194] D. Simmons, B. Weiss,Random walks on homogeneous spaces and Diophantine
approximation on fractals, Invent. Math. 216 (2019), 337�394.

[195] J. G. Sinai,The central limit theorem for geodesic �ows on manifolds of con-
stant negative curvature, Dokl. Akad. Nauk SSSR133 (2007), 1303�1306.

[196] B. Solomyak,Fourier decay for self-similar measures, Proc. Amer. Math. Soc.
149 (2021), 3277�3291.

[197] E.M. Stein,Harmonic analysis: real-variable methods, orthogonality, and os-
cillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathe-
matical Series, 43. Monographs in Harmonic Analysis, III. Princeton University
Press, Princeton, NJ, 1993.

[198] V. Strassen,An invariance principle for the law of the iterated logarithm,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete3 (1964), 211�226.

[199] V. Strassen,Almost sure behaviour of sums of independent random variables
and martingales. 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Proba-
bility (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory,
Part 1, pp. 315�343. Univ. California Press, Berkeley, Calif.

[200] R.S. Strichartz,Analysis of the Laplacian on the complete Riemannian mani-
fold, J. Funct. Anal. 52 (1983), 48�79,

[201] R.S. Strichartz, Magni�ed curves on a �at torus, determination of almost
periodic functions, and the Riemann-Lebesgue lemma, Proc. Amer. Math. Soc.
107 (1989), 755�759.

[202] R.S. Strichartz,Self-similar measures and their Fourier transforms. I, Indiana
Univ. Math. J. 39 (1990), 797�817.

[203] A. Strömbergsson,On the uniform equidistribution of long closed horocycles,
Duke Math. J. 123 (2004), 507�547,

[204] A. Strömbergsson,On the deviation of ergodic averages for horocycle �ows,
J. Mod. Dyn. 7 (2013), 291�328.

[205] A. Szczepa«ski,Relatively hyperbolic groups, Michigan Math. J. 45 (1998),
611�618.



174 Bibliography

[206] A. Terras. Harmonic analysis on symmetric spaces � Euclidean space, the
sphere, and the Poincaré upper half plane. Second edition. Springer, New York,
2013.

[207] W.P. Thurston. The Geometry and Topology of Three-Manifolds. Electronic
version. https://www.msri.org/publications/books/gt3m, 2002.

[208] H. Triebel. Theory of function spaces II. Monographs in Mathematics, 84.
Birkhäuser Verlag, Basel, 1992.

[209] P.P. Varjú, H. Yu, Fourier decay of self-similar measures and self-similar sets
of uniqueness, Anal. PDE 15 (2022), 843�858.

[210] N.Th. Varopoulos, Isoperimetric inequalities and Markov chains,
J. Funct. Anal. 63 (1985), 215�239.

[211] A. Venkatesh,Sparse equidistribution problems, period bounds and subconvex-
ity, Ann. of. Math. 172 (2010), 989�1094.

[212] W. Woess.Random Walks on In�nite Graphs and Groups. Cambridge Tracts
in Mathematics, 138. Cambridge University Press, Cambridge, 2000.

[213] J. Wolf,Growth of �nitely generated solvable groups and curvature of Rieman-
nian manifolds, J. Di�. Geom. 2 (1968), 421�446.

[214] P. Yang,Equidistribution of expanding translates of curves and Diophantine
approximation on matrices, Invent. Math. 220 (2020), 909�948.

[215] W. Yang, Statistically convex-cocompact actions of groups with contracting
elements, Int. Math. Res. Not. 2019 (2019), 7259�7323.



Curriculum vitae

Emilio Corso, born on April 23, 1994, in Trebisacce, Italy.

ˆ 2022 PhD in Mathematics, ETH Zurich, Switzerland

ˆ 2017 M. Sc. in Mathematics, Universit�e Sorbonne Paris-Nord, France

ˆ 2015 B. Sc. in Mathematics, Universit�a di Padova, Italy

ˆ 2012 Maturit�a scienti�ca, Liceo \E. Fermi", Padova, Italy

1


