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Abstract. We prove that higher rank abelian actions by diagonalizable elements on S-arithmetic
quotients of semisimple and solvable groups are disjoint in the sense of Furstenberg.
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1. Introduction

Furstenberg’s influential paper [24] marked the outset of the study of rigidity properties of
multiparameter algebraic actions on homogeneous spaces. His classification of closed subsets
of the one-dimensional torus which are invariant under the action of a non-lacunary semigroup
of positive integers represents, historically, the first discovery of the manifestation of a striking
dichotomy between the individual and the global behaviour of a vast class of such actions:
while the action of a single element of the acting group displays a certain flexibility, dynam-
ically embodied by the existence of several invariant subsets and measures, the full action
exhibits remarkable rigidity phenomena. Conjectures in this direction, in the context of higher-
rank abelian actions, were formulated by Katok and Spatzier [33] and later by Margulis [41];
substantial progress has been made on the subject, leading mostly to a complete classifica-
tion of invariant measures for the whole action under various positive entropy assumptions
(see [8,9,15,16,33,38]). Meanwhile, the study of the dynamical features of such actions on ho-
mogeneous spaces unveiled significant applications to number theory and arithmetic quantum
chaos: the reader is referred to the survey [39] as well as to [10,38] for more details thereupon.

In this paper, we are concerned with one particular aspect of the aforementioned rigidity,
which might be loosely phrased as the absence of common dynamical properties between higher-
rank diagonalizable actions on quotients of semisimple algebraic groups on one side, and the
same type of actions on quotients of solvable groups on the other. The lack of a shared structure
between the two systems is expressed in terms of the triviality of possible joinings thereof. In
the same paper mentioned earlier ([24]), Furstenberg introduced the notion of disjointness for
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two measurable dynamical systems, in an attempt to give a precise meaning to the condition
of them being relatively prime, in a sense suggested by the analogous condition of two integers
in ordinary arithmetics. Disjointness, and the related notion of joinings, have played a pivotal
role in the development of modern ergodic theory ever since; for a comprehensive account of
the usefulness of joinings in the study of measurable dynamics, we refer the reader to [25].
More specifically, in the setting of homogenous dynamics, various results establishing scarcity
of joinings have been established over the course of the last four decades [11,13,17,18,20,32,55].

We recall that, given two actions of a (abstract) group R on probability measure spaces
(X,A, µ), (Y,B, ν) by measure-preserving transformations, a joining of the two actions is de-
fined as a probability measure ρ on the product measurable space (X × Y,A ⊗ B) which is
invariant for the induced diagonal R-action on X×Y and projects to µ and ν, respectively, un-
der the canonical factor maps (the reader is referred to [21,69] for the required ergodic-theoretic
background). The set of all joinings is always non-empty, as the product measure µ× ν obvi-
ously satisfies the criteria in the definition. The actions of R on X and Y are called disjoint if
there are no joinings except for the trivial one, namely the product measure. Disjointness, at
least for sufficiently regular continuous actions of a topological group R, implies that the two
systems cannot admit a non-trivial common measurable factor, that is, a probability measure
space (Z, C, λ) with 0 < λ(A) < 1 for some A ∈ C, endowed with a measure-preserving action
of R and measure-preserving factor maps ϕX : X → Z, ϕY : Y → Z which are equivariant with
respect to the R-actions. Indeed, the existence of such a non-trivial common factor would give
rise to the relatively independent joining µ ×λ ν, which is concentrated on the set of points
(x, y) ∈ X × Y for which ϕX(x) = ϕY (y) (see [21], Chap. 6), and as such is non-trivial.

1.1. Setup and main result. In this manuscript, we deal with joinings of abelian algebraic
actions by diagonalizable elements on homogeneous spaces arising from perfect and solvable
groups. In view of its recurring appearance in number-theoretical applications of homogeneous
dynamics, we choose to work in the S-arithmetic context, namely over products of real and
p-adic algebraic groups. We now set out to introduce the precise setup, referring to Sections 2, 3
and 5 for precise definitions of all the involved notions. Sections 3 and 4 include an extensive
discussion of the role played by the various assumptions we shall consider in the statement of
our main result.

In the sequel, assume G and B are, respectively, a perfect and a solvable Zariski-connected
linear algebraic group defined over Q, and let S be a fixed finite set of places of Q containing
the infinite place. We denote by G(QS) and B(QS) the groups of QS-points of G and B,
respectively, and let G < G(QS), B < B(QS) be closed subgroups of finite index1.

If H is an algebraic group defined over Q and H < H(QS) is a closed subgroup, we shall
indicate with H(1) the group of S-units in H, that is

H(1) =

{
h = (hσ)σ∈S ∈ H : ∀χ ∈ XQ(H)

∏
σ∈S

|χ(hσ)|σ = 1

}
,

where XQ(H) is the group of Q-characters of H, and the notation | · |σ stands for the σ-adic
absolute value on Qσ, for any place σ ∈ S.

Denote by OS the subring of S-integral elements of Q. The group G(OS) of S-integral points
of G embeds diagonally in G(QS) with discrete image. As the group of Q-characters of the
perfect group G is trivial, a celebrated result of Borel and Harish-Chandra ([4]) affirms that
G(OS) actually embeds as a lattice in G(QS). Similarly, we shall regard B(OS) as diagonally
embedded in B(QS) as a discrete subgroup; in this case the image need not be a lattice, in
general. Let Γ < G ∩G(Q) and Λ < B ∩B(Q) be S-arithmetic groups, namely subgroups of
G(Q) and B(Q) which are commensurable to G(OS) and B(OS), respectively; with X = Γ\G

1Henceforth, a finite-index subgroup of a topological group R is always understood to be closed (hence open).
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and Y = Λ\B we indicate the homogeneous spaces defined by Γ and Λ. The group G acts on
X on the left by right translations via g0 · Γg = Γgg−1

0 for any g0, g ∈ G, and similarly for B.
As Γ is commensurable with G(OS), the quotient X comes equipped with a G-invariant

Borel probability measure mX , henceforth referred to as the Haar-Siegel measure, or the Haar
measure for short, on X. We shall assume that X is saturated by unipotents (see [17, Def. 1.1]):
the subgroup of G generated by all the unipotent elements in G(QS) acts ergodically on X
with respect to the Haar-Siegel measure2.

Let d ≥ 2 be an integer, and consider two group homomorphisms aG : Zd → G and
aB : Zd → B with diagonalizable images, by which we mean that, for any element a = (aσ)σ∈S
in aG(Zd) ∪ aB(Zd), aσ is diagonalizable over the algebraic closure Qσ, for any σ ∈ S. Assume
that the image of the morphism aB is contained in the discrete subgroup Λ. Additionally, we
impose two conditions on the homomorphism aG, one of algebraic and another of topological
flavour. Specifically, we assume on one hand that the image subgroup aG(Zd) consists of class-
A′ elements; our definition of a class-A′ element (for which we refer to Section 3.2) was first
formulated by Einsiedler and Lindenstrauss in [17], and extends the class-A notion considered
earlier by Margulis and Tomanov in [42,43]. On the other hand, we require that the projection
of aG to the QS-points of every Q-almost simple factor of G is topologically a proper map.

The group Zd acts by homeomorphisms on X and Y by precomposing the canonical actions
by right translations of G and B on their respective quotients with the homomorphisms aG
and aB. The Haar-Siegel measure mX is obviously invariant under the Zd-action. We equip
the solvable quotient Y with a Zd-invariant measure mY of maximal entropy3 with respect to
the action of the subgroup aB(Zd): specifically, we assume that for every n ∈ Zd the entropy of
mY for the transformation induced by aB(n) on Y equals the negative logarithm of the mod-
ulus of the adjoint automorphism induced by aB(n) on the Lie algebra of B, restricted to the
aB(n)-contracted eigenspaces. For a precise formulation of the condition, and an explana-
tion of the terminology we adopt, the reader is referred to Section 3.3; relevant examples of
such measures include the Haar-Siegel measure on the finite-volume homogeneous subspace
Λ\B(QS)

(1) ⊂ Y and, more generally, any aB(Zd)-invariant probability measure on Y which is
also invariant under the QS-points of the unipotent radical Ru(B) of B. We further suppose
that finite-index subgroups of Zd act ergodically with respect to mY .

In the spirit of Ratner’s measure classification theorem for unipotent actions [57], and in
accordance with the analogous rigidity conjectures for diagonalizable actions formulated in [33]
and [41], it is natural to expect joinings of such actions be of algebraic nature. In [17], the
authors show that any ergodic joining of class-A′ actions on perfect quotients saturated by
unipotents is a Q-algebraic measure (cf. [17, Def. 1.2]). The same conclusion holds in the
context of actions by unipotent elements, as shown by Tomanov [67] in a refinement of the
S-arithmetic extensions of Ratner’s results [42, 58]. Translated into our context, this amounts
to the existence of a Q-subgroup L < G × B and a finite-index subgroup L < L(1)(QS) such
that µ is the unique uniform measure supported on a closed orbit of a conjugate of L.

Suppose, as it is the case in many relevant applications, that mY is a Q-algebraic measure
supported on a translated orbit ΛB1b of a finite-index subgroup B1 < B1(QS), where B1 is a Q-
subgroup of B containg Ru(B). If µ is a Q-algebraic joining ofmX andmY , it necessarily follows
that the Q-subgroup L projects surjectively onto G and B1 (cf. Proposition 8.1); since G is

2This is only a mildly restrictive condition: if the solvable radical and the unipotent radical Ru(G) of G
coincide (which is the case for a perfect group G), and the quotient G/Ru(G) does not admit any Q-simple
factor G1 for which G1(QS) is a compact group, there exists a finite-index normal subgroup G1 < G such that
the S-arithmetic quotient (Γ ∩G1)\G1 is saturated by unipotents (see [17, Rmk. 3.2]). Observe that the group
generated by all the unipotent elements in G(QS) is contained in G, as we shall clarify in Lemma 2.5.

3The proof of our main result shows that maximality of entropy is not strictly necessary for the theorems to
hold as stated. We are currently planning to generalize the results accordingly in a subsequent paper.
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perfect and B is solvable, they admit no non-trivial isomorphic quotients by normal subgroups,
hence Goursat’s lemma (see Proposition 8.2) forces L = G × B1. Ignoring finite-index issues
for the sake of illustration, it follows that the only Q-algebraic joining possibly arising in this
setup is the product measure mX ×mY .

Accordingly, the chief goal of this article is to prove disjointness of the two measure-preserving
Zd-actions on X and Y ; in the case of a Q-algebraic measure mY , this is equivalent, as just
argued and up to finite-index, to asserting that every ergodic joining isQ-algebraic. We establish
the following theorem:

Theorem 1.1. Let G and B be, respectively, a perfect and a solvable Zariski-connected linear
algebraic group defined over Q, S a finite set of places of Q containing the infinite place,
G < G(QS) and B < B(QS) finite-index subgroups. Let Γ < G ∩ G(Q), Λ < B ∩ B(Q)
be S-arithmetic subgroups, and denote by X = Γ\G, Y = Λ\B the respective homogeneous
spaces. Let d ≥ 2 be an integer, and consider diagonalizable homomorphisms aG : Zd → G and
aB : Zd → Λ. Suppose aG is subject to the following conditions:

(1) the subgroup aG(Zd) < G is of class-A′ ;
(2) for any Q-almost simple factor Gs of G, the projection of aG to the group of QS-points

Gs(QS) is topologically a proper map.

Let mX be the Haar-Siegel measure on X and let mY be a Zd-invariant probability measure on
Y with maximal entropy with respect to the action of the group aB(Zd). Assume X is saturated
by unipotents, and finite-index subgroups of Zd act ergodically on (Y,mY ).

If µ is a Zd-invariant and ergodic joining of the measure-preserving actions of Zd on (X,mX)
and (Y,mY ), then µ is trivial, that is, µ equals the product measure mX×mY . As a consequence,
the two Zd-actions are disjoint.

Remark 1.2. As a consequence of the combination of the two assumptions on the homomor-
phism aG, finite-index subgroups of Zd act ergodically on the measure space (X,mX) as well.
A straightforward adaptation of the proof of Lemma 4.8 justifies this claim.

In particular, the last statement of Theorem 1.1 follows follows from the first assertion by the
following classical ergodic-decomposition argument: if µ is a joining of the measure-preserving
actions of Zd on (X,mX) and (Y,mY ), then choose a Zd-ergodic decomposition (cf. Section 4.1)
µ =

∫
Z
µz dρ(z), where (Z, C, ρ) is an auxiliary probability measure space. Then, since Zd acts

ergodically on (X,mX) and (Y,mY ), uniqueness of the ergodic decomposition implies that µz
is a Zd-invariant ergodic joining of mX and mY for ρ-almost every z ∈ Z (cf. [21, Lem. 6.8]).
Therefore, µz = mX × mY for ρ-almost every z ∈ Z by the first assertion in Theorem 1.1,
whence µ = mX ×mY .

The bulk of the work lies in the proof of a more restrictive version of Theorem 1.1, in
which additional conditions regarding the eigenvalues of the acting elements are imposed. The
statement reads as follows:

Theorem 1.3. Let G and B be, respectively, a perfect and a solvable Zariski-connected linear
algebraic group defined over Q, S a finite set of places of Q containing the infinite place,
G < G(QS) and B < B(QS) finite-index subgroups. Let Γ < G ∩ G(Q), Λ < B ∩ B(Q) be
S-arithmetic subgroups, and denote by X = Γ\G, Y = Λ\B the respective homogeneous spaces.
Let d ≥ 2 be an integer, and consider homomorphisms aG : Zd → G and aB : Zd → Λ such that
the product homomorphism aG × aB : Zd → G×B is of class-A′ and, for any Q-almost simple
factor Gs of G, the projection of aG to the QS-points Gs(QS) is a proper map.

Suppose mX and mY are probability measures on X and Y , respectively, satisfying the same
assumptions as in Theorem 1.1.
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If µ is a Zd-invariant and ergodic joining of the measure-preserving actions of Zd on (X,mX)
and (Y,mY ), then µ is trivial, that is, µ equals the product measure mX ×mY . Hence, the two
Zd-actions are disjoint.

We precede an overview of the proof of Theorems 1.1 and 1.3 by a discussion of the motiva-
tions underlying the present work.

1.2. Disjointness and joint equidistribution of primitive rational points. The results
set forth in this article were motivated by the work of Einsiedler, Shah and the second named
author in [19], concerning joint equidistribution of primitive rational points on the product of
the two-dimensional torus with the unit tangent bundle of the modular surface. For the sake
of illustration, we provide a short description of the relevant results established therein, which
typify those obtained in the present work.

It was shown by Sarnak in [62] that closed horocycle orbits equidistribute, as the period of
the orbit goes to infinity, in the homogeneous space SL2(Z)\ SL2(R), which can be identified
with the unit tangent bundle of the modular surface SL2(Z)\H ([21, Chap. 9]). More precisely,
denote

ut =

(
1 t
0 1

)
, t ∈ R, vs =

(
1 0
s 1

)
, s ∈ R, ay =

(
y 0
0 y−1

)
, y ∈ R>0,

and the corresponding subgroups by U = {us : s ∈ R}, V = {vt : t ∈ R}, A = {ay : y ∈ R>0}.
Then, for any continuous compactly supported function f : SL2(Z)\ SL2(R) → C,

e−T
∫ eT

0

f(us · SL2(Z)ae−T )ds
T→+∞−→

∫
SL2(Z)\SL2(R)

f dµ ,

where µ is the probability Haar measure on SL2(Z)\ SL2(R). For smooth functions, the state-
ment can be upgraded to a quantitative estimate of the error. It is then natural to ask whether
equidistribution carries over to sparser collections of points inside expanding horocycles. For
instance, consider the sets of primitive rational points

Rn =
{
SL2(Z)uk/nayn : 0 ≤ k ≤ n− 1, gcd(k, n) = 1

}
,

where (yn)n≥1 is a sequence of positive real numbers tending to zero. In general, the sets Pn do
not distribute uniformly inside the space SL2(Z)\ SL2(R) as n goes to infinity, as obstructions
may emerge: for instance, if yn = n−1 for every n, then an elementary computation shows that
Pn is contained in the negative horocycle orbit V · SL2(Z), and actually the collection of pairs

P1
n =

{(
SL2(Z)uk/n, SL2(Z)uk/nan−1

)
: 0 ≤ k ≤ n− 1, gcd(k, n) = 1

}
equidistributes in (U · SL2(Z)) × (V · SL2(Z)) towards the product of the uniform probability
measures on the two orbits. Using Weyl’s criterion, this follows immediately from well-known
bounds on Kloosterman sums [37]. However, rescaling the sequence (yn)n by appropriate nega-
tive powers allows to retain equidistribution; for instance, it is proved in [19] that the collection

P1/2
n =

{(
k/n+ Z, SL2(Z)uk/nan−1/2

)
: 0 ≤ k ≤ n− 1, gcd(k, n) = 1

}
equidistributes in (Z\R)× (SL2(Z)\ SL2(R)) towards the uniform probability measure mT × µ,
where T = Z\R. This statement is then improved to show joint equidistribution of P1

n and P2
n

under some congruence conditions (cf. [19, Thm. 1.3]): the collection

Dn =
{(
k/n+ Z, k/n+ Z, SL2(Z)uk/nan−1/2

)
: 0 ≤ k, k ≤ n− 1, kk ≡ 1 mod n}

equidistributes in T×T× (SL2(Z)\ SL2(R)) towards mT ×mT × µ, along sequences of integers
n which are coprime to two fixed distinct prime numbers p, q ∈ N. The key input for this joint
equidistribution statement is a disjointness result for products of certain diagonalizable actions
of the kind we consider in this manuscript, as we now briefly explain, referring to [19, Sec. 7]
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for the details. Let S = {p, q,∞} and denote TS = OS\QS and XS = SL2(OS)\ SL2(QS) the
S-arithmetic extensions of T and SL2(Z)\ SL2(R), respectively. The collection Dn lifts to the
set of points

Dext
n =

{(
OS+k/n,OS+k/n, SL2(OS)uk/nan−1/2

)
: 0 ≤ k, k ≤ n−1, kk ≡ 1 mod n} ⊂ T2

S×XS,

where k/n, k/n are considered as diagonally embedded in QS, and likewise uk/n, an−1/2 are
diagonally embedded in SL2(QS); it then suffices to show that the sets Dext

n , gcd(n, pq) = 1,
equidistribute with respect to the uniform measure on T2

S ×XS. It turns out that any weak∗

limit ν of the uniform measures supported on such sets is invariant under the action of Z2 on
T2
S ×XS given by

(a, b) · (t, s, x) = (p2aq2bt, p−2aq−2bs, xap−aq−b) , (a, b) ∈ Z2, t, s ∈ TS, x ∈ XS,

where p2aq2b, p−2aq−2b are diagonally embedded in QS and ap−aq−b stands for the diagonal em-

bedding of the matrix

(
p−aq−b 0

0 paqb

)
in SL2(QS). What is more, ν projects onto the Haar

measures mT2
S
,mXS

on the factors, owing to individual equidistribution on each factor. It is

thus a joining of the Haar measures for the projected Z2-actions on T2
S and XS. Invoking

Theorem 1.1, of which [19, Prop. 7.5] and [19, Prop. 7.7] are special cases, for G = SL2 and
B = Gm ⋉Ga (cf. Section 2.1 and 3.3) readily delivers ν = mT2

S
×mXS

, as desired.

1.3. Outline of the proof of Theorem 1.1. We provide here a brief illustration of the
argument leading to the proof of Theorem 1.1, referring the reader to Sections 4, 7 and 8 for a
thorough treatment.

First, as we already alluded to, it is possible to reduce Theorem 1.1 to Theorem 1.3 by means
of the decomposition of semisimple elements into their elliptic and non-compact parts. This is
explained in Section 4.

In order to prove Theorem 1.3, a major ingredient is the following adaptation of Ratner’s
measure-rigidity results for unipotent actions (see [43], [17, Thm. 4.1] and [67, Thm. 2]), whose
forumlation reveals the importance of reducing Theorem 1.1 to Theorem 1.3.

Proposition 1.4. Let S be a finite set of places of Q containing the infinite place, H a
Zariski-connected linear algebraic group defined over Q, H < H(QS) a finite-index subgroup,
∆ < H(Q) ∩ H an S-arithmetic subgroup embedded diagonally in H, X = ∆\H the quotient
space. Assume A < H is a commutative subgroup of class-A′ , U < H an A-normalized
Zariski-connected unipotent subgroup generated by one-parameter unipotent subgroups. Denote
by M the closed subgroup of H generated by A and U .

Let µ be an M-invariant and ergodic Borel probability measure on X, µ =
∫
X
µE
x dµ(x) a

U-ergodic decomposition of µ given by a family of conditional measures for µ with respect to
the σ-algebra E of U-invariant sets.

(1) There is a Zariski-connected Q-subgroup L < H of class F and an element h ∈ H with
∆h ∈ suppµ such that µ is concentrated4 on the orbit ∆N1

H(L(QS))h, where

N1
H(L(QS)) = {h ∈ H : h normalizes L(QS) and preserves the Haar measure mL(QS)}.

(2) There is a finite-index subgroup L < L(QS) such that the following hold:
(a) h−1Lh contains U and is normalized by M ;
(b) for µ-almost every x ∈ X, the measure µE

x is the unique h−1Lh-invariant measure
supported on the closed orbit h−1Lh · x.

4Here we mean that µ(∆N1
H(L(QS))h) = 1; notice that orbits of closed subgroups are always Borel subsets,

and the induced Borel structure turns them into standard Borel spaces (see [44, Thm. 2’]).
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Section 4.1 reviews the notions of conditional measures and ergodic decomposition. As far
as subgroups of class-F are concerned, we adopt here the terminology introduced in [67]: a
Zariski-connected Q-subgroup L < H is said to be of class F (relatively to the set of places
S) if, for any proper normal Q-subgroup Q < L, the group of QS-points of the quotient L/Q
contains a unipotent element different from the identity.

It is convenient to introduce the following notation: H denotes the product group G × B,
which is a finite-index subgroup of H(QS) for H = G × B, and ∆ indicates the product
Γ × Λ, so that Γ\G × Λ\B and ∆\H are isomorphic as topological H-spaces. Denoting by
a = aG × aB : Zd → H the diagonal homomorphism, we may thus interpret the joining µ as an
A-invariant and ergodic probability measure on ∆\H, where A = a(Zd).

For the time being, suppose we know that our Zd-invariant ergodic joining µ is U -invariant for
some non-trivial Zariski-connected unipotent subgroup U < H normalized by A and generated
by one-parameter unipotent subgroups. In light of Proposition 1.4, we deduce that µ is, possibly
upon a translation by an element of H, invariant under a finite-index subgroup of the group of
QS-points of a connected Q-subgroup L, and is concentrated on an orbit of the unit normalizer
N1
H(L(QS)). Since suppµ contains an orbit of the group N1

H(L(QS)), standard topological and
algebraic arguments allow to deduce that the normalizer NH(L) of L in H projects surjectively
onto G on the perfect side. If B′ denotes the projection of NH(L) onto B, then G and B′

have no non-trivial isomorphic quotients in common, being a perfect and a solvable group,
respectively. Goursat’s lemma (cf. Proposition 8.2) forces NH(L) = G × B′, that is, L is a
normal subgroup of G×B′.

Now, if G is a Q-simple group, L can be decomposed as a direct product L1 × L2, where
L1 < G and L2 < Ru(B) are Zariski-connected normal subgroups. If L1 is non-trivial, it follows
readily that µ is the product measure (see Proposition 8.7); else, L2 is non-trivial and we may
proceed by induction on the algebraic dimension of Ru(B), taking its quotient by L2. If G is
semisimple, a similar decomposition L = L1 ×L2 holds; we resort to induction once more, this
time on the number of Q-simple factors of G. Once the semisimple case is established, the
case of a perfect group G follows by considering a Levi decomposition and applying the rigidity
result in Proposition 8.10. All this is carried out in full detail in Section 8.

It remains to produce invariance under a non-trivial unipotent subgroup. For this we dis-
tinguish two separate cases, depending on whether the collections Ψ(aG) and Ψ(aB) of coarse
Lyapunov weights (see Section 3.1 for their definition) are distinct or not. In the first case,
assuming for instance that [α] is a coarse Lyapunov weight for aG not contained in Ψ(aB), we
apply [17, Prop. 6.5] and [16, Thm. 7.9] to obtain invariance of µ under the subgroup U = G[α]

(defined in Section 3.1), which by construction is non-trivial and satisfies the assumptions in
Proposition 1.4. In the second case, additional invariance is obtained via either the high entropy
method, as outlined for instance in [17, Sec. 7], or through a form of rigidity of the entropy
function, adapted from more recent work by Einsiedler and Lindenstrauss on rigidity of higher
rank actions on solenoids (cf. [18]).

Acknowledgments. Ostensibly, a large portion of the arguments employed in this article is
inspired by [17]. We are deeply indebted to Manfred Einsiedler for teaching us the underlying
theory and for constant assistance along the way. M.L. would like to express his deep gratitude
to Elon Lindenstrauss and to the Einstein Institute of Mathematics at the Hebrew University of
Jerusalem, where this project was started. M.L. is further indebted to Menny Aka, Uri Bader
and Osama Khalil for several discussions concerning this project.
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2. Preliminaries on algebraic and arithmetic groups

In this section, we introduce standard terminology and notation concerning linear algebraic
groups, their Lie algebras and their S-arithmetic subgroups, which will be employed throughout
the article. We mainly refer the reader to [2, 3, 40,53,65] for comprehensive treatments.

2.1. Linear algebraic groups. We first recall that a place of Q is an equivalence class of
its completions (cf. [72, Chap. 3]). It is well-known that places of Q are in one-to-one corre-
spondence with the set P ∪ {∞}, where P = {2, 3, . . . } is the set of rational primes, and the
correspondence is given by the embeddings of Q into Q∞ := R and into the fields of p-adic
numbers Qp, for any p ∈ P . Throughout the manuscript, S ⊂ P ∪ {∞} denotes a finite subset
of places of Q containing the infinite place.

Let k be an algebraically closed field of characteristic zero. A linear algebraic group over k is
a subgroup G < GLd(k) of invertible matrices which is defined by polynomial equations5 with
coefficients in k; more precisely, there exists a set of polynomials T ⊂ k[X11, . . . , Xdd] such that

G = {x = (xij)1≤i,j≤d ∈ GLd(k) : f(x11, . . . , xdd) = 0 for all f ∈ T}.
If F ⊂ k is a subfield, we say that G is defined over F (or that G is an F -group) if T can
be chosen inside F [X11, . . . , Xdd]; in characteristic zero, this is equivalent to requiring that the
complete ideal of relations of G

I(G) = {f ∈ k[X11, . . . , Xdd] : f(x) = 0 for all x ∈ G}
is generated by the F -submodule IF (G) := I(G)∩F [X11, . . . , Xdd]. If G is defined over F , we
denote by G(F ) = G ∩GLd(F ) the subgroup of the F -points of G.

We say that a linear algebraic group G is Zariski-connected (or simply connected) if it cannot
be written as the union of two proper subsets, each of which is the zero locus of a family of
polynomials with coefficients in k. Throughout the article, we shall tacitly assume that every
linear algebraic group we deal with is Zariski-connected, unless otherwise specified.

Given two linear algebraic groups G < GLd(k) and H < GLd′(k) over the field k, it is
straightforward to check that the product G × H, canonically embedded via block-diagonal
matrices in GLd+d′(k), is a linear algebraic group over k. Furthermore, if G and H are Zariski-
connected, then so is G×H [65, Thm. 1.5.4].

With Ga and Gm we shall denote, respectively, the k-algebraic groups given by the additive
group of the field k and the multiplicative group k× of its invertible elements.

If G is a linear algebraic group over k, an algebraic subgroup of G is a subgroup H < G
which is itself a linear algebraic group. We say that H is an F -subgroup if it is defined over F .

We say that a connected linear algebraic group G < GLd(k) is:

• perfect if G coincides with its own commutator subgroup [G,G];
• solvable if it is solvable as an abstract group, meaning that the derived series
G0 = G,Gi+1 = [Gi,Gi] for i ≥ 0, terminates in the trivial subgroup;

• unipotent if it consists of unipotent elements, that is, for all g ∈ G there exists a positive
integer n such that (g − 1d)

n = 0, where 1d denotes the identity matrix in GLd(k);
• diagonalizable if it is commutative and consists only of semisimple elements: for any
g ∈ G there is h ∈ GLd(k) such that hgh−1 is a diagonal matrix;

• simple if it does not contain any non-trivial, proper, Zariski-connected normal subgroup;

5We prefer working with this elementary definition of linear algebraic groups, rather than with the well-
established, more general notion (cf. [3, 65]). This doesn’t restrict the scope of our considerations, as all the
arguments are unaffected by replacing the given linear algebraic groups with isomorphic copies; as is well-
known (see, for instance, [65, Thm. 2.3.7]), every linear algebraic group, according to the abstract definition, is
isomorphic to an algebraic subgroup of some GLd.
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• F -almost simple if it is defined over a subfield F ≤ k and does not contain any non-
trivial, proper, Zariski-connected normal F -subgroup;

• reductive if it does not contain any non-trivial Zariski-connected unipotent normal sub-
group;

• semisimple if it does not contain any non-trivial Zariski-connected solvable normal sub-
group.

Given a linear algebraic group G, the radical of G, denoted by R(G), is the maximal Zariski-
connected solvable normal subgroup of G; the unipotent radical of G, indicated with Ru(G),
is the maximal Zariski-connected unipotent normal subgroup of G.

Let G < GLn be a linear algebraic group over k; for any element g ∈ G, there is a unique pair
(gss, gu) ∈ G2 such that g = gssgu = gugss, gss is semisimple and gu is unipotent; this is called
the multiplicative Jordan decomposition of g. The elements gss, gu are called, respectively, the
semisimple and the unipotent part of g. If G′ < GLm is another k-group and ρ : G → G′ is a
morphism of algebraic groups, then ρ(gss) = ρ(g)ss, ρ(gu) = ρ(g)u for any g ∈ G.

Hereinafter, we shall confine ourselves to linear algebraic groups defined either over Q or over
Qσ, for σ a place of Q.

It is worth listing a couple of well-known structural results for linear algebraic groups, to
which we shall repeatedly appeal. The first is the Levi decomposition:

Theorem 2.1 (cf. [53, Thm. 2.3]). Let G be a Zariski-connected linear algebraic group defined
over Q, Ru(G) its unipotent radical. There exists a Zariski-connected, reductive Q-subgroup M
such that G is the semidirect product M⋉Ru(G). Moreover, the commutator subgroup [M,M]
is a semisimple Q-subgroup.

Any subgroup M as in the stament of Theorem 2.1 is called a Levi factor of G.

Next, we recall the structure theorem for semisimple groups:

Theorem 2.2 (cf. [53, Prop. 2.4]). Let G be a semisimple linear algebraic group defined over
Q, (Gi)i∈I the collection of minimal non-trivial Zariski-connected normal Q-subgroups of G.
Then I is a finite set and G is an almost direct product of the Gi. In particular, G is an almost
direct product of Q-almost simple groups.

Spelling out the statement, the product map
∏

i∈I Gi → G is a surjective morphism of
algebraic groups (cf. [65, Chap. 2] for the definition) with finite kernel. The Gi’s are called the
Q-almost simple factors of G.

More generally, suppose that G is a perfect Zariski-connected Q-group; if G = M⋉ Ru(G)
is a Levi decomposition as in Theorem 2.1, then M = [M,M] is semisimple. By a slight abuse
of terminology, we shall refer to the Q-almost simple factors of a given Levi factor Gss of G
as the Q-almost simple factors of G. Whenever we adopt this terminology, we thus assume
implicitly that a choice of a Levi factor has been made in advance.

Let now L be a Zariski-connected normal Q-subgroup of a Zariski-connected, semisimple
Q-group G; if G1, . . . ,Gr are the Q-almost simple factors of G, then the projection to Gi of
the inverse image of L under the isogeny G1×· · ·×Gr → G is a normal connected Q-subgroup
of the Q-almost simple group Gi, whence it is either the trivial group or the whole Gi, for all
i = 1, . . . , r. More is true, namely:

Corollary 2.3. Let G be a Zariski-connected, semisimple Q-group G with Q-almost sim-
ple factors G1, . . . ,Gr, L a non-trivial, Zariski-connected normal Q-subgroup. There is a
unique subset J ⊂ {1, . . . , r} such that L is the image of

∏
j∈J Gj under the canonical map∏r

i=1 Gi → G, and L ∩Gi is finite for all i /∈ J .
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2.2. Lie algebras of linear algebraic groups. We now intend to review the necessary back-
ground on Lie algebras of linear algebraic groups. Specifically, we aim to define and survey the
basic properties of Lie algebras of groups of the form G = G(Qp), where G is a linear algebraic
group defined over Q and p is a finite place of Q. As for real Lie groups, these Lie algebras
encode locally the structure of the group operations, and thus are peculiarly meaningful to the
understanding of the sort of dynamics we are interested in. We also refer the reader to [29] for
a more extensive treatment of the topic.

Let Matdd(Qp) denote the set of square matrices of size d with coefficients in Qp, equipped
with the unique Hausdorff topology making it into a topological vector space over Qp. We
endow Matdd(Qp) with the norm ∥x∥p := sup1≤i,j≤d |xi,j|p for any x = (xi,j)1≤i,j,≤d ∈ Matdd(Qp),

where | · |p denotes, as before, the p-adic absolute value on Qp. Given ε > 0, we shall adopt the
shorthand notation (−ε, ε)p = {t ∈ Qp : |t|p < ε}.

Definition 2.4. An analytic curve into Matdd(Qp) is a map ϕ : (−ε, ε)p → Matdd(Qp) such
that

ϕ(t) =
∞∑
k=0

tkxk , t ∈ (−ε, ε)p ,

where xk ∈ Matdd(Qp) for all k ≥ 0 and the series is absolutely convergent for all t ∈ (−ε, ε)p.

Given an analytic curve ϕ into Matdd(Qp), we define the tangent of ϕ to be x1 ∈ Matdd(Qp),
and write ϕ′(0) = x1. If G < GLd(Qp) is a subgroup, by an analytic curve in G we mean an
analytic curve ϕ such that ϕ(t) ∈ G for all t ∈ (−ε, ε)p and ϕ(0) = 1d. An analytic curve ϕ is
called an analytic one-parameter subgroup if

ϕ(t1 + t2) = ϕ(t1)ϕ(t2) for all t1, t2 ∈ (−ε, ε)p .
Motivated by the analogous notion in the setting of real Lie groups, we define the Lie algebra

g of the group G = G(Qp) as the set of all tangents to analytic one-parameter subgroups in G.
We claim that g is indeed a Lie subalgebra of Matdd(Qp), and for the sake of completeness we
sketch the standard argument for this hereunder.

We recall that we may define an exponential map on the open ball of radius rp = p−
1

p−1

around 0 in Qp via the usual formula

exp (x) =
∑
n≥0

xn

n!
, |x|p < p−

1
p−1 . (2.1)

Its inverse is given by the logarithm, defined on the open ball of radius rp around 1 as

log (1 + x) =
∑
n≥1

(−1)n+1x
n

n
, |x|p < rp .

Just as in the real case, these two functions may be extended to appropriate subsets of

Matdd(Qp). Specifically, if rp = p−
1

p−1 denotes the radius of convergence of the exponential
power series in (2.1), then, for any x ∈ Matdd(Qp) such that ∥x∥p < rp, we set

exp (x) =
∑
n≥0

xn

n!
, log (1 + x) =

∑
n≥1

(−1)n+1x
n

n
,

so that exp (log (1 + x)) = 1 + x and log (exp (x)) = x for any x ∈ Matdd(Qp) with ∥x∥p < rp,
as follows from standard manipulation of formal power series.

By means of the exponential function, it is straightforward to show that we may equally
consider tangents to arbitrary analytic curves in G to define its Lie algebra, instead of restricting
ourselves to one-parameter subgroups; more precisely, we have that

g = {x ∈ Matdd(Qp) : ∃ ϕ : (−ε, ε)p → G analytic with ϕ′(0) = x} . (2.2)
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Indeed, if ϕ : (−ε, ε)p → G is an analytic curve with tangent ϕ′(0) = x ∈ Matdd(Qp), then an
easy calculation shows that

x = lim
k→∞

p−k log ϕ(pk) . (2.3)

Let Brp(1d) denote the open ball of radius rp around the identity matrix in Matdd(Qp). Since
U = log (Brp(1d) ∩G) is a compact subset of Matdd(Qp), its cone C(U) = {λx : λ ∈ Qp, x ∈ U}
is closed. Thus, (2.3) implies that x ∈ C(U), so that λx ∈ U for some λ ∈ Qp. Therefore, the
curve ψ(t) = exp (tx), defined for |t|p sufficiently small, is an analytic one-parameter subgroup
in G with tangent x (we refer the reader to [29] for the details of this argument). The fact that
g is a Lie subalgebra of Matdd(Qp) is now a direct consequence of the equality in (2.2).

We hasten to add that the previous construction (and the ensuing observations) works equally
well for any closed subgroup G < GLd(Qp). Conversely, it turns out that for any Lie subalgebra
g of Matdd(Qp) there exists a closed subgroup G < GLd(Qp) having g as its Lie algebra in the
above sense (actually, it suffices to define G = exp (g ∩Brp(0))).

2.3. Linear algebraic groups over local fields. If G < GLd(C) is a linear algebraic group
defined over R, the group G(R) of its real points is equipped with the topology induced by

the euclidean topology on Rd2 , making it into a locally compact topological group.6 Similarly,
if G is a p-adic linear algebraic group (that is, G < GLd(Qp) for some algebraic closure Qp

of Qp) defined over Qp, we equip G(Qp) with the subspace topology derived from the unique

Hausdorff topology making Qd2

p into a topological Qp-vector space.

If σ is a place of Q and G is a Qσ-group, a one-parameter Qσ-subgroup of G is a mor-
phism ϕ : Ga → G of algebraic groups defined over Qσ. It is called a one-parameter unipotent
Qσ-subgroup if ϕ(Ga) consists only of unipotent elements. Abusing terminology, we shall also
refer to the image ϕ(Ga) as a one-paramter unipotent subgroup; the intended meaning is each
time clear from the context.

We record here the following statement about one-parameter unipotent subgroups.

Lemma 2.5. Let σ be a place of Q, G < GLd a Qσ-group, g ∈ G(Qσ) a unipotent element.
Then g is contained in a one-parameter unipotent Qσ-subgroup U of G. If F is a subfield of Qσ

and g ∈ G(F ), then the one-parameter subgroup is defined over F . Moreover, if G < G(Qσ) is
a finite-index subgroup, then U(Qσ) < G.

Proof. Let X = log g. This is well-defined as g is unipotent. Note that X ∈ Matdd(F ) if
g ∈ G(F ). Hence the group U < GLd given by the image of the morphism Ga → GLd,
t 7→ exp(tX), is a closed subgroup defined over F . The group U is clearly one-dimensional.
As H = {gm : m ∈ Z} is infinite, the Zariski closure of H is at least one-dimensional7. U is a
one-dimensional, Zariski-connected, Zariski-closed subgroup containing H, and hence U is the
Zariski closure of H. As G is Zariski closed and H < G, we get U < G. Finally, we get

U(Qσ) = U ∩GLd(Qσ) < G ∩GLd(Qσ) = G(Qσ).

Note that the Jordan normal form of X is defined over Qσ. Using this, it is easy to see that
exp(tX) ∈ GLd(Qσ) if and only if t ∈ Qσ. In particular, U(Qσ) agrees with the image of the
unipotent one-parameter subgroup t 7→ exp(tX), t ∈ Qσ.

Assume now that G < G(Qσ) is a closed subgroup of finite index and suppose without loss
of generality that G is normal in G(Qσ). By the second isomorphism theorem we have

U(Qσ)/
(
U(Qσ) ∩G

) ∼= (U(Qσ)G
)
/G < G(Qσ)/G.

6Unless otherwise specified, all topological spaces under considerations are assumed to be locally compact,
Hausdorff and second countable.

7We refer to [65, Sec. 1.8] for the notion of dimension of an algebraic variety.



12 E. CORSO AND M.W. LUETHI

Hence U(Qσ) ∩ G has finite index in U(Qσ). It therefore suffices to show that Qσ does not
have any non-trivial closed subgroup of finite index. If σ is infinite, this is immediate. Hence
we assume that σ = p is a finite prime. Let L < Qp be a closed subgroup of finite index. As
Qp is abelian, L is a normal subgroup, and hence we obtain an isomorphism between the group
of characters of Qp/L and the unitary characters χ : Qp → S1 = {z ∈ C : |z| = 1} satisfying
L < kerχ. Any such character has finite range, which will give the desired contradiction. To

this end, we recall that the Pontryagin dual (cf. [22]) Q̂p is isomorphic to Qp via the following
explicit isomorphism. Fix a character χ1 : Qp → S1 which maps t =

∑∞
k=ℓ akp

k ∈ Qp to

χ1(t) = exp

(
2πi

−1∑
k=ℓ

akp
k

)
.

The isomorphism ψ : Qp → Q̂p is then given by

ψ(a)(t) := χ1(at) , a, t ∈ Qp.

From this it is easy to see that no non-trivial character of Qp has finite range. Indeed, let
a ∈ Qp\{0}, then ψ(a)(p−na−1) is a primitive pn-th root of unity whenever n ∈ N. In particular,

the range of ψ(a) contains all roots of unity, and hence is infinite. As Q̂p/L separates points
([22, Thm. 3.34]), this implies that Qp/L is trivial, that is, L = Qp. □
2.4. S-algebraic groups and S-arithmetic subgroups. The main reference for this subsec-
tion is [40]. In the sequel, a linear algebraic group G defined over Q, or, concisely, an algebraic
Q-group, is always intended to be a subgroup of some GLd(Q); conforming to a well-established
convention, we shall drop the reference to Q and simply write GLd when we refer to the full
group of Q-points of GLd.

If G < GLd is an algebraic Q-group and σ is a place of Q, there is an obvious way to
identify G with a linear algebraic group over the field Qσ; thus, we can consider the group of
its Qσ-points defined as G(Qσ) := G(Qσ) ∩GLd(Qσ).

Given a finite set of places S of Q containing the infinite place, we denote by QS =
∏

σ∈S Qσ;
moreover, for each element t = (tσ)σ∈S ∈ QS, we let |t|S :=

∏
σ∈S |tσ|σ.

If G an algebraic Q-group, the notation G(QS) stands for the set of its QS-points, that is,
G(QS) :=

∏
σ∈S G(Qσ), which is a locally compact group for the product topology.

Definition 2.6. An S-algebraic group G is a finite-index subgroup of G(QS), where G is an
algebraic Q-group and S is a finite set of places of Q containing the infinite place.

Given an S-algebraic group G < G(QS), we define the unit group of G as the subgroup

G(1) =

{
g = (gσ)σ∈S ∈ G : ∀χ ∈ XQ(G),

∏
σ∈S

|χ(gσ)|σ = 1

}
,

where XQ(G) denotes the group of Q-characters of G, that is, of morphisms of Q-groups
G → Gm defined over Q.

We now turn to the discussion of S-arithmetic subgroups and lattices. For the sake of
completeness, we recall that a lattice in a locally compact group G is a discrete subgroup
Γ < G such that the topological space of right cosets X = Γ\G admits a Borel probability
measure mX , called the Haar-Siegel measure on X, which is invariant under the action of G on
Γ\G by right translations g · Γg0 = Γg0g

−1, g, g0 ∈ G; this means that mX(g · A) = mX(A) for
any g ∈ G and any Borel set A ⊂ X. If we equip G with a metric dG inducing its topology and
invariant under left translations,8 there is a derived metric dX inducing the quotient topology

8It is a theorem of G. Birkhoff and Kakutani that any Hausdorff, first countable group G admits such a
metric, see [45, Sect. 1.22]
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on X and defined by

dX(Γg,Γh) = inf
γ1,γ2∈Γ

dG(γ1g, γ2h) = inf
γ∈Γ

dG(γg, h) ,

for any Γg,Γh ∈ X, where the second equality follows from left-invariance of dG.

For any set of places S of Q, we define the ring of S-integers of Q as

OS = {x ∈ Q : |x|p ≤ 1 for every finite place p /∈ S} ;

in particular, if S is finite and S \ {∞} = {p1, . . . , pr}, then OS = Z[p−1
1 , . . . , p−1

r ].
For any algebraic Q-group G < GLd, we may consider the subgroup of its OS-points, defined

as G(OS) := G(Q) ∩GLd(OS). The subgroup G(OS) embeds diagonally in the product group
G(QS); the image, which we shall identify with G(OS), is a discrete subgroup. It turns out
that G(OS) is actually contained in the unit group G(1)(QS) of G(QS), and it is a lattice in it:
this follows combining [53, Thm. 5.6] and Proposition A.3 in the appendix.

Recall that, given an abstract group G, two subgroups H1, H2 of G are called commensurable
if their intersection H1 ∩ H2 is of finite index both in H1 and H2. In the following definition,
both G(OS) and G(Q) are identified with their diagonal embeddings in G(QS).

Definition 2.7. Given an S-algebraic group G < G(QS), an S-arithmetic subgroup is a sub-
group Γ < G ∩G(Q) which is commensurable to the subgroup of S-integral points G(OS)

Notice that, for every S-arithmetic subgroup Γ of an S-algebraic group G < G(QS), the
intersection Γ ∩ G(1) is a lattice in the unit group G(1); in particular, if G has no non-trivial
Q-characters (which is the case, for instance, if G is perfect) then Γ is a lattice in G ([4]).

Henceforth, we shall employ the term S-arithmetic quotient to refer to a homogeneous space
of the form X = Γ\G, where G is an S-algebraic group and Γ < G is an S-arithmetic subgroup.

3. Generalities on diagonalizable actions

3.1. Lyapunov weights and (un-)stable leaves. For this subsection, we mostly follow [9,
Sec. 4]. LetG < G(QS) be an S-algebraic group; we define the Lie algebra ofG as g :=

⊕
σ∈S gσ,

where gσ is the Lie algebra of G(Qσ) as defined in Section 2.2. It is endowed with a canonical
structure of QS-module. By abuse of language, we shall refer to a QS-submodule of g as a
subspace.

For convenience of the reader, we include the following result which will be needed in the
forthcoming discussion on characters.

Lemma 3.1. If V ⊂ g is a subspace, then it decomposes as a direct sum V =
⊕

σ∈S Vσ, where
Vσ ⊂ gσ is the subspace defined by the projection of V to gσ.

Proof. Given σ ∈ S, let δσ ∈ QS denote the element with components (δσ)τ equal to 1 if σ = τ
and 0 otherwise. Every element v ∈ V satisfies v =

∑
σ∈S δσv with δσv ∈ gσ. This implies in

particular that
⊕

σ∈S Vσ ⊆ V . The opposite inclusion is clear. □
Denote by Ad the adjoint action of G on its Lie algebra g, which is defined componentwise

as Adg(x) = gxg−1 for any g ∈ G, x ∈ g. Consider now a diagonalizable homomorphism
a : Zd → G; then g decomposes as the direct sum of subspaces which are invariant under the
action of any automorphism Ada(n),n ∈ Zd. More precisely, let QS denote the product of the

algebraic closures Qσ, σ ∈ S, and QS
×
be the set of its invertible elements; there exist finitely

many characters χ : Zd → QS
×
and non-trivial subspaces gχ such that g =

⊕
χ g

χ and

(Ad ◦ a)(n)x = χ(n)x , x ∈ gχ ⊗QS, n ∈ Zd .
For each σ ∈ S, let χσ be the projection of χ to Qσ. As a consequence of Lemma 3.1, we may
always decompose a character arising, as before, as an eigenvalue of the homomorphism a into
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a product χ =
∏

σ∈S χσ, where χσ : Zd → Qσ
×
is either trivial or an eigenvalue of the projection

of a onto G(Qσ) acting on gσ ⊗Qσ. Henceforth, we shall call characters of a those characters

χσ arising from eigenvalue-characters χ : Zd → QS
×
. It will be convenient to consider χσ as a

QS-valued function by setting (χσ(n))σ′ = 1 for all n ∈ Zd and for all σ′ ∈ S \ {σ}.
Recall that the absolute value | · |σ admits a unique extension to an absolute value on the

algebraic closure Qσ ([60, Chap. 3]). We shall adopt the same notation | · |σ for such extension.

Definition 3.2. A Lyapunov weight of a is a functional α : Zd → R such that there exists

σ ∈ S and a character χσ : Zd → Qσ
×
of a satisfying α(n) = log |χσ(n)|σ for any n ∈ Zd.

We denote by Φ the set of all Lyapunov weights of a. In the qualitative analysis of Lyapunov
weights we shall presently conduct, the precise size of a single weight is immaterial. Instead,
we shall be interested in the set of all α ∈ Φ (and the corresponding eigenspaces) for which
α(n) > 0 (or α(n) < 0), for some fixed n ∈ Zd. Moreover, the subspace of all eigenvectors
corresponding to a given Lyapunov weight α is not in general a subalgebra of g. The following
definition takes care of both issues.

Definition 3.3. A coarse Lyapunov weight of a is an equivalence class for the equivalence
relation ∼ on Φ defined by α ∼ β if there exists c > 0 such that α = cβ.

We shall indicate with [Φ] = Φ/ ∼ the set of all coarse Lyapunov weights of a.

Given [α] ∈ [Φ] a coarse Lyapunov weight of a, define

Σ[α] := {χ : Zd → QS : χ is a character of a and log |χ|S ∈ [α]}

and

g[α] :=
∑
χ∈Σ[α]

gχ ;

we refer to g[α] as the coarse Lyapunov weight space corresponding to [α].

Lemma 3.4 ([9, Prop. 4.9, Prop. 4.11]). For any coarse Lyapunov weight [α] ∈ [Φ] of a, the
subspace g[α] is a nilpotent subalgebra of g.

Corollary 3.5 ([9, Prop. 4.11]). Let [α] ∈ [Φ] be a coarse Lyapunov weight of a. Then the ex-
ponential map exp: g[α] → G is well-defined everywhere and its image G[α] is a closed unipotent
subgroup of G with Lie algebra g[α].

We shall actually need a slight generalization of the former construction. For an arbitrary
collection Ψ ⊂ Φ of Lyapunov weights of a, define

g[Ψ] =
∑
α∈Ψ

g[α] .

The analogue of Corollary 3.5 in this more general context reads as follows:

Lemma 3.6 ([9, Prop. 4.11]). Assume Ψ ⊂ Φ is a collection of Lyapunov weights of a satisfying
[Ψ + Ψ] ∩ [Φ] ⊂ [Ψ]. Then the subspace g[Ψ] is a nilpotent subalgebra of g. Furthermore, the
associated group G[Ψ] = exp g[ψ] is a closed unipotent subgroup of G with Lie algebra g[Ψ].

As in [17], a Zariski-connected unipotent subgroup of G is intended to be the image under the
exponential map of a Lie subalgebra of g[Ψ], where Ψ ⊂ Φ satisfies the condition in Lemma 3.6.

We now come to the definition of stable and unstable subgroups for a fixed element of the
group a(Zd) < G.
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Definition 3.7. Let a : Zd → G be a diagonalizable homomorphism, Φ its associated set of
Lyapunov weights, n ∈ Zd. The a(n)-stable horospherical subgroup of G is defined as

G−
a(n)

:= ⟨G[α] : α ∈ Φ, α(n) < 0⟩ .

Similarly, The a(n)-unstable horospherical subgroup of G is defined as

G+
a(n)

:= ⟨G[α] : α ∈ Φ, α(n) > 0⟩ .

Notice that we may have equivalently set

G−
a(n) = {g ∈ G : a(n)kga(n)−k → eG as k → +∞}

and
G+
a(n) = {g ∈ G : a(n)−kga(n)k → eG as k → +∞} ,

which in particular gives readily G+
a(n) = G−

a(−n) (which follows also directly from Definition 3.7).

Remark 3.8. A brief remark about terminology is in order. We will focus our attention on the
action of a single element a(n) (n ∈ Zd) on the space X = Γ\G, where recall that an element
g ∈ G acts on X by g · Γh = Γhg−1. Now suppose x ∈ X, g ∈ G−

a(n) and let y = g · x; then, for
every integer k,

a(n)k · y = a(n)kga(n)−k · (a(n)k · x) ,
so that

dX(a(n)
k · x, a(n)k · y) ≤ dG(a(n)

kga(n)−k, eG) → 0 as k → +∞ .

Hence the orbit of x under the action of the subgroup G−
a(n) is contained in the stable manifold

through x for the action of the element a(n) (cf. [7]). This property is the reason why G−
a(n) is

called the stable horospherical subgroup. The same considerations apply to G+
a(n) as well.

3.2. The class-A′ assumption. The upcoming definition of class-A′ elements and homomor-
phisms is taken from [17].

Definition 3.9. Let G < G(QS) be an S-algebraic group. A diagonalizable element a ∈ G is
said to be of class-A′ if the following hold:

• the projection of a to G(R) has positive real eigenvalues;
• for each finite p ∈ S, the projection of a to G(Qp) is such that all of its eigenvalues are
powers of λp, where λp ∈ Q×

p is some invertible element with |λp|p ̸= 1.

A subgroup A < G is said to be of class-A′ if every element of A is of class-A′ . Finally, if
d ≥ 1 is an integer, a homomorphism a : Zd → G is said to be of class-A′ if its image a(Zd) is
a subgroup of G of class-A′ .

Throughout the article, we shall only consider class-A′ subgroups arising as images of class-
A′ homomorphisms; in particular, they are always simultaneously diagonalizable.

3.3. The assumption on the solvable factor. In order to elucidate the meaning of the
requirement we impose on the measure mY on the solvable quotient, we briefly recall the
entropy formula for translations on homomogeneous spaces (cf. [42, Sec. 9], [36, Thm. 2.1.3]).

Proposition 3.10. Let Y = Λ\B be an S-arithmetic quotient, a = (aσ)σ∈S ∈ B a diagonal-
izable element, µ an a-invariant probability measure on Y . Let λ1, . . . , λr ∈

∪
σ∈S Qσ be those

eigenvalues of the adjoint automorphisms Adaσ : Lie(B(Qσ)) → Lie(B(Qσ)) of σ-adic absolute
value strictly less than 1. Then the entropy with respect to µ of the transformation induced by
a on Y is bounded from above by

hµ(a) ≤ −
r∑
i=1

mi log |λi| , (3.1)
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where mi is the multiplicity of the eigenvalue λi for any i = 1, . . . , r. Moreover, if Λ is a lattice
in B and µ is the Haar-Siegel measure on Λ\B, then equality holds.

The precise formulation of the maximal-entropy assumption we place on the measure mY

reads thus as follows: we say that mY has maximal entropy with respect to the action of a
diagonalizable subgroup AB < B if, for any a ∈ AB, equality holds in the formula (3.1).

Since coarse Lyapunov subgroups for the Zd-action associated to the homomorphism aB are
unipotent (Corollary 3.5), they are all contained in Ru(B)(QS). Therefore, Proposition 5.3
readily implies that any aB(Zd)-invariant measure mY which is additionally invariant under
Ru(B)(QS) has maximal entropy with respect to the aB(Zd)-action on Y . This provides a rich
class of Q-algebraic measures (cf. Section 1) satisfying the maximal entropy assumption, namely
any Q-algebraic measure supported on a translated orbit ΛB1b, for an element b ∈ B and a
finite-index subgroup B1 < B1(QS) of the QS-points of a Q-subgroup B1 containing Ru(B).

An informative example: toral automorphisms. As a salient class of actions on solvable
quotients dealt with by Theorem 1.1, we mention Zd-actions by automorphisms of real compact
nilmanifolds, which can be recast in the framework of actions by translations on homogeneous
spaces. The same realization can be performed for automorphisms of compact abelian groups
of the form Gn

a(OS)\Gn
a(QS), for n ≥ 1 an integer.

For simplicity of exposition, we discuss the case of the compact abelian group Tn = Zn\Rn.
It is well-known that any orientation-preserving automorphism of the Lie group Tn is given by
Tn ∋ Zn+x 7→ Zn+bx ∈ Tn, where b is a matrix in SLn(Z) and bx denotes the standard matrix
product between b and the column vector x ∈ Rn. Let now b1, . . . , bd be d commuting matrices
in SLn(Z), and assume that they are diagonalizable (over Q); denote by D the Zariski closure,
inside the Q-group SLn, of the subgroup generated by {b1, . . . , bd}. Then D is a diagonalizable
Q-group,9 acting canonically by automorphisms of the commutative, unipotent Q-group Gn

a ;
we may thus form the semidirect10 product B = D ⋉ Gn

a , which is a solvable Q-group with
unipotent radical Gn

a .
The action of an element (b0, 0) ∈ B(R) by right translations on B(Z)\B(R) is given by

B(Z)(b, x) 7→ B(Z)(bb0, x), indicating with bb0 the standard matrix product, as before.
Notice that, if b0 is an element of D(Z) and b = 1n is the identity matrix, then B(Z)(bb0, x) =

B(Z)(b0, x) = B(Z)(1n, b−1
0 x). Therefore, the projection ofGn

a(R) = Rn < B(R) toB(Z)\B(R),
which is homeomorphic to Tn, is invariant under the Zd-action on B(Z)\B(R) arising from the
homomorphism aB : Zd → B(R) given by aB(ei) = bi, i = 1, . . . , d; furthermore, this restricted
action is topologically conjugated to the Zd-action on Tn induced by the matrices b1, . . . , bd.

3.4. Failure of disjointness in rank one. Let us now explicate, by means of counterexam-
ples, how Theorem 1.1 fails in the absence of the higher-rank assumptions on the homomor-
phisms aG. Suppose that Z acts on SL2(Z)\ SL2(R) by

n · SL2(Z)g = SL2(Z)g
(
en/2 0
0 e−n/2

)
, g ∈ SL2(R), n ∈ Z;

this is the Z-action on the unit tangent bundle of the modular surface SL2(Z)\H via the ×1-
map of the geodesic flow (cf. [21, Sec. 9.4]); as shown by Ornstein and Weiss in [49], geodesic
flows on hyperbolic surfaces have the Bernoulli property, which in particular entails that the
invertible measure-preserving system given by the ×1 map of the flow is measure-theoretically
isomorphic to a Bernoulli shift. For the solvable factor, we take the Z-action on the two-torus

T2 given by the hyperbolic matrix

(
2 1
1 1

)
; this induces what is known as an hyperbolic toral

9The group D is defined over Q since the matrices b1, . . . , bd have rational coefficients, see [40, Chap. I].
10For the sake of clarity, the group law we consider here is given by (d, x)(d′, x′) = (dd′, x + dx′) for any

(d, x), (d′, x′) ∈ B.
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automorphism, which is again isomorphic to a Bernoulli shift [34]. Therefore the two Z-actions
are isomorphic, which is at the opposite extreme of being disjoint.

4. Disjointness without eigenvalue restrictions on the solvable factor

The aim of this section is to illustrate how the statement of Theorem 1.1 can be derived from
the version phrased in Theorem 1.3, that is, from the case where the diagonal homomorphism
a : Zd → H is of class-A′ . This reduction then enables us to apply Proposition 1.4, in which
the class-A′ assumption is essential (cf. [42]), to the S-arithmetic quotient ∆\H, as outlined in
the introduction and thoroughly carried out in Section 8.

The deduction of Theorem 1.1 from Theorem 1.3 relies crucially on the decomposition of
diagonalizable elements into compact and non-compact parts; for the reader’s convenience, we
briefly recall it hereunder (see also [17, Cor. 3.3] and its proof).

Let G be a connected R-group, a ∈ G(R) an element which is diagonalizable over C. There
is a unique decomposition a = aellanc into commuting semisimple elements aell, anc ∈ G(R) such
that aell has only complex eigenvalues of absolute value one and anc has positive real eigenvalues.
The elements aell and anc are called, respectively, the elliptic and non-compact part of a. If
(aλ)λ∈Λ is a commuting family of diagonalizable elements, then their elliptic and non-compact
parts all commute with each other; moreover, there exists an R-split subtorus T < G such that
the connected component, for the analytic topology on G(R), of the group T(R) of its real
points contains all the non-compact parts of the collection (aλ)λ∈Λ.

Remark 4.1. If G < G(R) is a finite-index subgroup containing the set {aλ}λ∈Λ, then it
contains the set of their non-compact parts (and hence the set of their compact parts as well),
since G contains any connected subgroup of G(R).

Fix now a non-archimedean place σ = p, for a positive prime p, and recall that the unique
extension of | · |p to an absolute value on a fixed algebraic closure Qp takes values in the set
{0} ∪ {pα : α ∈ Q}. Suppose that G is a connected Qp-group, and let a ∈ G(Qp) be a

diagonalizable element all of whose eigenvalues (in Qp) have p-adic absolute value which is an
integer power of p; this is the case, for instance, if a is diagonalizable over Qp. Then there
is a unique decomposition a = aellanc into commuting semisimple elements aell, anc ∈ G(Qp),
referred to, respectively, as the elliptic and the non-compact part of a, such that all eigenvalues
of aell have p-adic absolute value one, and all eigenvalues of anc are integer powers of the
uniformizer p ∈ Qp. As for the real place, if we start with a commuting family of diagonalizable
elements in G(Qp), then all their elliptic and non-compact parts commute with each other;
furthermore, all the elliptic parts belong to the compact subgroup G(Zp) < G(Qp). Finally, if

a ∈ G(Qp) is diagonalizable over Qp, the decomposition into elliptic and non-compact part can
be applied to a power aj for some integer j ≥ 1.

Remark 4.2. Suppose a is a diagonalizable element contained in a subgroup G < G(Qp) of
finite index ℓ ∈ N, and let aj = aellanc be the elliptic-non compact splitting in G(Qp) of a power
of a. Applying Lagrange’s theorem to a normal finite-index11 subgroup N < G(Qp) contained
in G, it follows that the powers aℓ!ell and a

ℓ!
nc both belong to N , and hence to G.

If now a1, . . . , ad are d commuting diagonalizable elements contained in G and generating a
subgroup A, let j be an integer such that aji admits an elliptic-non compact decomposition for

every i = 1, . . . , d. Then the elliptic and non-compact parts of ajℓ!1 , . . . , a
jℓ!
d belong to G, and

the subgroup AV generated by ajℓ!1 , . . . , a
jℓ!
d has finite index in A.

11Such a normal subgroup N can be obtained as the intersection of all conjugates of G inside G(Qp); its
index in G(Qp) is at most ℓ!.
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A further essential ingredient in the reduction is the ergodic decomposition of invariant
measures with respect to actions of subgroups. The upcoming section serves the purpose of
recalling the related formalism and the relevant results.

4.1. Conditional measures and ergodic decomposition. The ergodic decomposition of
invariant measures for group actions lends itself to a description in terms of conditional measures
with respect to an appropriate sub-σ-algebra. The language of conditional measures will be
also employed in Section 5 as a convenient framework in which to inscribe the more refined
notion of leafwise measures. We thus begin by setting up basic notation concerning conditional
measures. The main references for this paragraph are [21, Chap. 5], [63] and [68].

Let X be a set, B a σ-algebra of subsets of X, such that the pair (X,B) is a standard Borel
space, that is, there exists a measurable isomorphism from (X,B) to the Borel space (Y,BY )
associated to a compact metrizable space Y . We denote by M+(X) the set of positive finite
measures on (X,B), endowed with the coarsest σ-algebra for which the maps ν 7→ ν(B), B ∈ B
are measurable. If Z is a set and C is a σ-algebra of subsets of Z, a C-measurable measure-valued
function on Z is meant to be a function Z → M+(X) which is measurable when M+(X) is
endowed with the σ-algebra just described, and Z is equipped with σ-algebra C.

For any ν ∈ M+(X), we denote by L1(X,µ) the vector space of complex, ν-integrable
functions defined on X (here we do not identify functions that agree ν-almost everywhere).

Definition 4.3. Let X,B,M+(X) be as above, and let µ be probability measure on (X,B).
If A ⊂ B is a sub-σ-algebra, a family of conditional measures of µ given A is defined as a
collection {µA

x }x∈X of probability measures on (X,B) satisfying the following two conditions:

(1) the assignment X ∋ x 7→ µA
x ∈ M+(X) defines an A-measurable measure-valued func-

tion;
(2) for any f ∈ L1(X,µ), the A-measurable function

X ∋ x 7→
∫
X

f dµA
x

is a conditional expectation of f given A.

Phrased more accurately, the second property amounts to the assertion that, for any f ∈
L1(X,µ) and any measurable set A ∈ A,∫

A

f dµ =

∫
A

(∫
X

f(y)dµA
x (y)

)
dµ(x) .

Heuristically, the function x 7→
∫
X
fdµA

x represents the best approximation of f given the
knowledge of the events in the σ-algebra A.

Conditional measures always exist in our current setup (for a detailed proof of this fact,
we refer the reader to [21, Thm. 5.14] or alternatively to [63, Sec. I.3.5]). A σ-algebra A is
countably generated if there exists a subset S ⊂ A which is at most countable and generates A.
In this case, the atom [x]A of a point x ∈ X with respect to A, defined as the intersection of
all A ∈ A containing x, is itself an element of A; moreover, it turns out that each conditional
measure µA

x is concentrated on the atom [x]A, at least for µ-almost every point x ∈ X. In this
sense, we may loosely say that the conditional measure µA

x describes µ on the A-atom of x.

We now turn to the formal notion of ergodic decomposition in the context of group actions.
Let G be a locally compact group, acting measurably12 on a standard Borel space (X,B). Let
M1(X) ⊂ M+(X) denote the subset of probability measures on (X,B), endowed with the
induced measurable structure from M+(X). Suppose that µ ∈ M1(X) is invariant under the

12A group action of a topological group G on a measurable space (X,B) is called measurable if the action
map G×X → X is measurable, when G×X is endowed with the product σ-algebra BG ⊗ B.
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G-action. A G-ergodic decomposition of µ is a measurable assignment (Y, C, ρ) ∋ y 7→ µy ∈
M1(X), where (Y, C, ρ) is a probability measure space, such that:

(1) for ρ-almost every y ∈ Y , µy is invariant and ergodic with respect to the G-action;
(2) it holds that ∫

X

f dµ =

∫
Y

∫
X

f(x)dµy(x) dρ(y)

for every f : X → C bounded and measurable.

Concisely, we shall say that µ =
∫
Y
µy dρ(y) is a G-ergodic decomposition of µ.

A G-ergodic decomposition µ =
∫
Y
µy dρ(y) induces, via push-forward of the measure ρ on

Y , a probability measure on the measurable space M1(X).
The following result is paramount in the ergodic theory of group actions, giving existence

and uniqueness of the ergodic decomposition of an invariant measure.

Theorem 4.4. Let G be a locally compact group acting measurably on a standard Borel space
(X,B), µ a G-invariant probability measure on (X,B). There exists a G-ergodic decomposition
of µ. Moreover, if µ =

∫
Y
µydρY (y) and µ =

∫
Z
µzdρZ(z) are two such decompositions, then

the probability measures induced on M1(X) by ρY and ρZ coincide.

For the existence part of the theorem, we refer the reader to [27,68]; uniqueness of the ergodic
decomposition is shown, for instance, in [52, Sec. 12].

Remark 4.5. Measurable actions of locally compact groups on standard Borel spaces always
admit topological models. More precisely, given a measurable action of a locally compact group
G on a standard Borel space (X,B), there is a compact metrizable space Y , a continuous
action of G on Y , and a G-equivariant measurable isomorphism ϕ : (X,B) → (Y,BY ); this is
also shown in [68]. We shall appeal to this result in the proof of Proposition 8.7.

Ergodic decompositions relate to conditional measures in the following way: in the setting of
Theorem 4.4, let E ⊂ B be the σ-algebra of G-invariant measurable sets on X. Let {µE

x}x∈X be
a family of conditional measures of µ given E . Then the assignment (X,B, µ) 7→ µE

x ∈ M1(X)
defines a G-ergodic decomposition of µ.

Let us now consider the following situation, which will frequently present itself in the sequel.
Suppose that µ is invariant and ergodic under the action of a locally compact group G, and
let G′ < G be a closed, normal subgroup such that the quotient group G′/G is compact and
abelian. In this case, the G′-ergodic decomposition of µ takes a particularly simple form. Let
mG/G′ be the unique probability Haar measure on the compact group G/G′, and fix a G′-
ergodic decomposition (Y,B, ρ) ∋ y 7→ µy of µ. Choose an ergodic component ν of µ, that is
a G′-ergodic measure belonging to the topological support of the probability measure induced
by ρ on M1(X). The push-forward measure g∗ν under the action of an element g ∈ G depends
only on the left coset gG′, as ν is G′-invariant. The quotient G/G′ being abelian, the measure
g∗ν is G′-invariant and ergodic for any g ∈ G. More is true, namely:

Proposition 4.6. Suppose ν is a G′-invariant and ergodic probability measure on X. Then the
measure

µ =

∫
G/G′

g∗ν dmG/G′(gG′)

is G-invariant and ergodic.
Conversely, if µ is G-invariant and ergodic, and ν is a G′-ergodic component of µ, then

µ =

∫
G/G′

g∗ν dmG/G′(gG′)

is a G′-ergodic decomposition of µ.
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4.2. Proof of Theorem 1.1 assuming Theorem 1.3. We are now in a position to deduce
Theorem 1.1, assuming the validity of Theorem 1.3. Therefore, suppose a : Zd → H is the
product of two diagonalizable homomorphisms aG : Zd → G and aB : Zd → B satisfying the hy-
pothesis in Theorem 1.1, and let µ be an ergodic joining of the resulting measure-preserving Zd-
actions on (X,mX) and (Y,mY ). Combining the decomposition into elliptic and non-compact
parts for the different places σ ∈ S (cf. the beginning of Section 4, in particular Remarks 4.1
and 4.2), we infer the existence of two group homomorphisms aell, anc : Zd → H and a finite-
index subgroup AV of A = a(Zd) satisfying the following properties:

(1) AV = {anc(n)aell(n) : n ∈ Zd};
(2) anc(n), aell(m) commute for any n,m ∈ Zd;
(3) the image of aell is relatively compact in H;
(4) the image Anc of anc is a subgroup of class-A′ .

Remark 4.7. Observe that, if H = H(QS) and the elements of A are diagonalizable over QS,
then AV can be taken to be equal to A.

We aim to manufacture an Anc-invariant and ergodic measure, to which Theorem 1.3 applies.
Denote by M the closure of aell(Zd) with respect to the analytic topology on H; it is a compact
abelian group contained in the centralizer CG(Anc) of Anc. Choose an AV -ergodic component
µ0 of µ; since A/AV is a finite abelian group, Proposition 4.6 gives that

µ =
1

[A : AV ]

∑
a′AV ∈A/AV

a′∗µ0 (4.1)

is an AV -ergodic decomposition of µ. Projecting (4.1) to X, we deduce that

mX =
1

[A : AV ]

∑
a′AV ∈A/AV

(πG(a
′))∗(πX)∗µ0

is a πG(AV )-ergodic decomposition of mX , where πG : H → G and πX : X × Y → X denote
the canonical projection maps. As finite-index subgroups of Zd act ergodically on (X,mX)
(see Remark 1.2), it follows that mX = (πX)∗µ0, by uniqueness of the ergodic decomposition.
Similarly, we deduce that µ0 projects to mY on Y .

Let now A′ be the subgroup generated by AV and M , which coincides with the product
set AVM since AV and M commute. Notice that A′ also coincides with the group AncM .
Endow A′ with the final topology derived from the surjective product morphism
AV ×M ∋ (a, g) 7→ ag ∈ A′, where AV is equipped with the discrete topology and M with the
topology induced from H; such a topology makes A′ into a locally compact second countable
topological group. The subgroup AV < A′ is discrete, hence closed, and the quotient A′/AV is
isomorphic, as a topological group, to the quotient M/(AV ∩M), the latter being a compact
abelian group. By virtue of Proposition 4.6, the measure

µ′ :=

∫
A′/AV

a′∗µ0 dmA′/AV
(a′AV ) (4.2)

is A′-invariant and ergodic.
At this point, we endow A′ with a possibly different topology, namely the final topology

coming from the product morphism Anc ×M → A′, where Anc is equipped with the discrete
topology. In this way Anc becomes a discrete, hence closed subgroup of A′, and the quotient
A′/Anc is isomorphic to M/(Anc ∩M), that is to a compact abelian group. If µnc is an Anc-
ergodic component of µ′, we may invoke Proposition 4.6 once more to infer that

µ′ =

∫
A′/Anc

a′∗µnc dmA′/Anc(a
′Anc) (4.3)
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is an Anc-ergodic decomposition of µ′.
In order to apply Theorem 1.3 to µnc, we need to identify its projections onto X and Y . Since

µ0 projects to the Haar measure mX on X, the same holds true for µ′ by (4.2). Projecting (4.3)
to X, it follows that

mX =

∫
A′/Anc

πG(a
′)∗(πX)∗µnc dmA′/Anc(a

′Anc)

is a πG(Anc)-ergodic decomposition of mX . We now appeal to:

Lemma 4.8. The Haar measure mX is ergodic under the action of the subgroup πG(Anc).

For the proof of this lemma, we rely on the weak-mixing13 properties of actions of certain
class-A′ elements on perfect quotients saturated by unipotents, which are established in [17].
Specifically, we shall make use of the following result:

Proposition 4.9 ([17, Prop. 3.1]). Let X = Γ\G be an S-arithmetic quotient of a Zariski-
connected perfect Q-group G. Let mX be the Haar measure on X, and assume that X is
saturated by unipotents. Let a ∈ G be an element of class-A′ whose projection onto the QS-
points of any Q-almost simple factor of G is non-trivial. Then the action of a on X is weak
mixing with respect to mX .

Proof of Lemma 4.8. Recall our topological assumption on the homomorphism aG : Zd → G:
its projection onto the QS-points of every Q-almost simple factor of G is proper. This carries
over to the restriction of aG to the finite-index subgroup a−1(AV ) < Zd. Since aG(a−1(AV )) and
πG(Anc) differ only by a compact group, the same property is also enjoyed by the homomorphism
πG ◦ anc : a−1(AV ) → πG(Anc). Denote by πi, i ∈ I, the various projections of the latter
homomorphism onto the QS-points of the Q-almost simple factors of G, where I is a finite
set. As the non-compact subgroup AV cannot be the finite union of the compact sets π−1

i (e),
e being the identity element of the corresponding factor, it follows that there exists an element
a0 ∈ πG(Anc) whose projection under πi is non-trivial for all i ∈ I. Since a0 is a class-
A′ element by definition of the group Anc, Proposition 4.9 yields that the action of the cyclic
group generated by a0 on X is weak mixing, hence in particular ergodic, with respect to mX .
A fortiori, mX is ergodic under the action of the larger group πG(Anc). □

Lemma 4.8, coupled with uniqueness of the ergodic decomposition, delivers (πX)∗µnc = mX .

We now examine the projection of µnc onto the solvable factor; for notational convenience,
we denote it by mY,nc. First, we claim that m′

Y has maximal entropy for the action of the
group πB(Anc). For this, we fundamentally rely on the relationship between maximality of
entropy and invariance under coarse Lyapunov subgroups expressed in Proposition 5.3. Our
assumption that mY has maximal entropy with respect to the action of aB(Zd) (cf. Proposi-
tion 3.10) implies, applying Propositions 5.3 and 5.4 to the action of elements of aB(Zd), that
µ is invariant under all coarse Lyapunov subgroups associated to non-trivial coarse Lyapunov
weights (cf. Section 3.1) for the aB(Zd)-action on Y . This invariance property transfers at once
to the measure m′

Y , projecting (4.2) to Y and noticing that πB(M) normalizes the subgroup
of B generated by all such coarse Lyapunov subgroups. It now suffices to observe that, by
the very nature of the elliptic-non compact decomposition, the actions of the groups aB(Zd)
and πB(Anc) on Y give rise to the same collection of coarse Lyapunov subgroups; therefore,

13Recall that a measure-preserving transformation T on a probability measure space (Z, C, ν) is said to be
weak mixing if

1

N

N−1∑
n=0

|ν(T−n(A) ∩B)− ν(A)ν(B)| N→∞−→ 0

for all measurable subsets A,B ⊂ Z.
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appealing to Propositions 5.3 and 5.4 once more, but this time for the action of πB(Anc) on
Y , we achieve the proof of our claim that m′

Y has maximal entropy with respect to the latter
group.

Projecting (4.3) onto Y gives

m′
Y =

∫
A′/Anc

πB(a
′)∗(mY,nc) dmA′/Anc(a

′Anc) , (4.4)

where m′
Y is the projection of µ′ to Y . If a0 is an element of πB(Anc), then this integral

representation carries over to the entropy with respect to a0, that is,

hm′
Y
(a0) =

∫
A′/Anc

hπB(a′)∗(mY,nc)(a0) dmA′/Anc(a
′Anc) ; (4.5)

we refer the reader to [25, Thm. 15.12] for a proof of this general relationship. As m′
Y has

maximal entropy for the πB(Anc)-action, (4.5) forces

hm′
Y
(a0) = hπB(a′)∗(mY,nc)(a0) for mA′/Anc-almost every a′Anc ∈ A′/Anc,

since A′ being abelian implies that πB(a
′)∗(mY,nc) is πB(Anc)-invariant for every a

′ ∈ A′. Upon
replacing µnc with a translate of it by an element of A′, we might therefore assume that
hm′

Y
(a0) = hmY,nc

(a0). Hence, we have proved that mY,nc has maximal entropy with respect
to the action of πB(Anc).

We are now finally in a position to apply Theorem 1.3 to the measure µnc, and deduce that
µnc = mX ×mY,nc. As a consequence,

µ′ =

∫
A′/Anc

a′∗µnc dmA′/Anc(a
′Anc) =

∫
A′/Anc

a′∗(mX ×mY,nc) dmA′/Anc(a
′Anc)

=

∫
A′/Anc

mX × πB(a
′)∗(mY,nc) dmA′/Anc(a

′Anc)

= mX ×
∫
A′/Anc

πB(a
′)∗(mY,nc) dmA′/Anc(a

′Anc) = mX ×m′
Y ,

where the last equality comes from (4.4).

Recall that µ′ is an average of µ0 over the compact group M . We new set out to deduce that
µ0 = mX ×mY from the product structure of µ′, which has just been established.

Let Zd act on the product space (X × Y, µnc)× (M,mM) via

n · (z, g) =
(
anc(n) · z, aell(n)g

)
, for any z ∈ X × Y, g ∈M, n ∈ Zd.

We let

mY,nc ×mM =

∫
Y×M

ν(y,g) d(mY,nc ×mM)(y, g)

be an ergodic decomposition of mY,nc × mM with respect to the Zd-action. Then
ν̃(y,g) = mX × ν(y,g) is a Zd-invariant and ergodic measure on X × Y ×M , as the action of
Anc on (X,mX) is mixing14. Let ψ : X ×Y ×M → X ×Y denote the action map (z, g) 7→ g · z.
Similarly, let ψY : Y × M → Y denote the action map (y, g) 7→ g · y. If f1 ∈ Cc(X) and
f2 ∈ Cc(Y ) are compactly supported continuous functions, then∫

X×Y
f1 ⊗ f2 dψ∗ν̃(y,m) =

∫
Y×M

(∫
X

f1(g · x) dx
)
f2(g · y) dν(y,g)(y, g)

=

∫
X

f1 dmX

∫
Y

f2 d(ψY ∗ν(y,g)) .

14Here we are invoking the well-known fact that the product of a mixing and an ergodic action is ergodic.
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Density of the subspace spanned by functions of the form f1⊗f2 inside C0(X×Y ) implies that
ψ∗ν̃(y,g) = mX × ψY ∗ν(y,g). If now z ∈ X × Y , g ∈M , and n ∈ Zd, we have

ψ
(
n · (z, g)

)
= ψ

(
anc(n) · z, aell(n)g

)
= aell(n)ganc(n) · z = a(n) · ψ(z, g) ,

whence ψ is Zd-equivariant, where Zd acts on X×Y via the homomorphism n 7→ aell(n)anc(n).
As ψ is Zd-equivariant, we know that ψ∗ν̃(y,g) is Zd-invariant and ergodic. On the other hand,
we have that, for any f ∈ Cc(X × Y ),∫

X×Y
f dµ′ =

∫
M

∫
X×Y

f(g · z) dµnc(z) dmM(g)

=

∫
X×Y

f dψ∗(µnc ×mM)

=

∫
X×Y×M

f ◦ ψ(x, y, g) d(mX ×mY,nc ×mM)(x, y, g)

=

∫
Y×M

∫
X×Y×M

f ◦ ψ(x, y, g) dν̃(y,g)(x, y, g) d(mY,nc ×mM)(y, g)

=

∫
Y×M

∫
X×Y

f(x, y) d(ψ∗ν̃(y,g))(y) d(mY,nc ×mM)(y, g)

As a result,

µ′ =

∫
Y×M

ψ∗ν̃(y,g) d(mY,nc ×mM)(y, g)

is an ergodic decomposition of µ′ for the Zd-action induced by the homomorphism
n 7→ aell(n)anc(n). In particular, by uniqueness of the ergodic decomposition, there are
g1, g2 ∈M and y ∈ Y such that

µE = g1 ∗ ν̃(y,g2) = mX × g1∗ν(y,g2).

As µE is a joining, it follows that g1∗ν(y,g2) = mY and therefore µE = mX ×mY . As µ
E was an

arbitrary ergodic component, we finally obtain that µ = mX ×mY .

The reduction of Theorem 1.1 to Theorem 1.3 is thus achieved.

5. Leafwise measures and entropy contribution

In order to obtain additional invariance of the measure under a unipotent subgroup in the
proof of Theorem 1.1, we rely heavily on a combination of the high and low entropy method
(cf. [8–10, 14, 16]),as already mentioned in the introduction. Both tools are intended as a way
to establish invariance of a certain measure µ under the action of a subgroup H < G on
a quotient space of the form Γ\G, under appropriate positive entropy assumptions for the
given action; their effectiveness in producing invariance hinges upon the relationship between
entropy and leafwise measures, which describe µ along H-orbits in a way which is reminiscent
of the description of a measure on atoms of a sub-σ-algebra provided by conditional measures
(cf. Section 4.1). The main purpose of this section is therefore twofold: we first define the
notion of leafwise measures in a fairly general context of continuous group actions and list a
few properties which will be relevant in the sequel. Afterwards, we specialise the treatment
to the case of algebraic actions on homogeneous spaces, and relate the entropy of a single
acting element with respect to the measure µ to volume-growth properties of the corresponding
leafwise measures. This will in turn enable us to detect invariance of the measures under
suitable horospherical subgroups.
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5.1. Leafwise measures. To state the defining properties of leafwise measures conveniently,
we shall rely on the theory of conditional measures set forth in Section 4.1.

Let H be a locally compact group acting continuously on a locally compact topological space
X, endowed with a positive Radon measure µ. We shall need in addition the technical condition
that the orbital map H ∋ h 7→ h · x is injective for µ-almost every x ∈ X. We wish to identify
a collection of measures on the acting group H which describe µ along the H-orbits. Tipically
(and chiefly in the context of actions on homogeneous spaces), there is no countably generated
sub-σ-algebra A whose atoms correspond to orbits for the H action; also, we are not assuming
that µ is a probability measure. Hence conditional measures do not provide us with a solution
rightaway.

Definition 5.1 furnishes an adequate replacement of conditional measures in the present set-
ting. We say that a countably generated sub-σ algebra A of the Borel σ-algebra on X is
H-subordinate if, for each x ∈ X, there exists an open, relatively compact subset Vx ⊂ H such
that the A-atom of x is given by [x]A = Vx · x = {h · x : h ∈ Vx}. Such a set Vx will be referred
to as the shape of the atom in what follows.

Definition 5.1. Let H,X, µ be as above. A collection (µHx )x∈X′ of positive Radon measures on
H, indexed by a µ-conull set X ′ ⊂ X, is called a family of leafwise measures if it satisfies the
following property: for every Borel set Y ⊂ X with 0 < µ(Y ) < ∞, and for every countably
generated, H-subordinate σ-algebra A ⊂ BY on Y , a family of conditional measures µA

y , y ∈ Y
for the normalized measure µ|Y /µ(Y ) is given by

µA
y =

1

µHy (Vy)

(
(ϕy)∗(µ

H
y |Vy)

)
,

for µ-almost every y ∈ Y , where Vy is the shape of the atom [y]A and ϕy : H → X is the orbital
map defined by y.

We say that a Borel subset X ′ ⊂ X is µ-conull if µ(X \ X ′) = 0. Further, for any Borel
subset Y ⊂ X, we define the restricted measure µ|Y on Y by µ|Y (A) = µ(A) for any Borel set
A ⊂ Y . The notation BY stands for the Borel σ-algebra on Y .

A construction of leafwise measures in the general setting outlined above is presented in [38]
and, with minor adjustmens, in [16]. From now until the end of this section, we shall place
ourselves in the following specific situation: G < G(QS) is an S-algebraic group, Γ < G an
S-arithmetic subgroup, X = Γ\G the corresponding S-arithmetic quotient. Further, we let
A < G be a subgroup of class-A′ , and we fix an element a ∈ A \ {eG}. We assume that µ
is an A-invariant probability measure on X. Finally, the role of the group H in Def. 5.1 will
be played by an a-normalized, Zariski connected algebraic subgroup U < G−

a , where G
−
a < G

is the stable horospherical subgroup defined by a (cf. Section 3.1). Clearly, we are considering
the action of H on X by right multiplication.

5.2. Entropy contribution for horospherical subgroups. In this paragraph, we examine
the relationship between the entropy for the action of a fixed element a ∈ A \ {eG} with
respect to an a-invariant probability measure µ and the corresponding leafwise measures µUx
for the subgroup U ; what follows is taken entirely from [16, Sec. 7] and, yet more closely,
from [17, Sec. 5], to which we refer for details and proofs of the upcoming results.

Denote by θa the automorphism of U defined via conjugation by a. A function f : X → R
is called essentially a-invariant if it coincides µ-almost everywhere with the function f ◦ Ta,
where Ta(Γg) = Γga−1 for all Γg ∈ X.
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Lemma 5.2 (cf. [9, Lem. 9.1]). Let V ⊂ U be a bounded neighborhood of the identity. For
µ-almost every x ∈ X, the limit

hµ(a, U, x) = lim
n→∞

− log µUx (θ
n
a (V ))

n

exists and does not depend on the choice of V . The assignment x 7→ hµ(a, U, x) defines an
essentially a-invariant, positive function on (a µ-conull subset of) X. Furthermore, we have:

(1) for µ-almost every x ∈ X,

hµ(a, U, x) ≤ hµEx(Ta) ,

where µE
x, x ∈ X is an ergodic decomposition of µ;

(2) if µUx has support inside a Zariski closed subgroup Px ≤ U which is normalized by a,
then

hµ(a, U, x) ≤ mod(a, Px) ,

where mod(a, Px) is the negative logarithm of the module of the automorphism θa|Px.

The average

hµ(a, U) :=

∫
X

hµ(a, U, x)dµ(x)

will be referred to as the entropy contribution of U .

We record here a refinement of the second assertion of Lemma 5.2, which is instrumental in
several steps of our argumentation (see, for instance, Section 4.2 and Lemma 8.5) and can be
seen as a generalization of Proposition 3.10 to every a-normalized subgroup of G−

a .

Proposition 5.3 ([16, Thm. 7.9]). Let U < G−
a be an a-normalized closed subgroup, for some

a ∈ A, and let µ be an a-invariant probability measure on X = Γ\G. Then the entropy
contribution of U is bounded by

hµ(a, U) ≤ mod(a, U) ,

with equality holding if and only if µ is U-invariant.

Lastly, we recall the relationship between the Kolmogorov-Sinai entropy of the transformation
induced by an element a on X and the entropy contribution of the horospherical subgroup G−

a .

Proposition 5.4 ([9, Prop. 9.4]). Let µ be an A-invariant probability measure on X = Γ\G.
Then hµ(a) = hµ(a,G

−
a ) for any a ∈ A.

Let now A = a(Zd), where a : Zd → G is a class-A′ homomorphism. As in section 3.1,
we denote by Φ the set of Lyapunov weights for a, and by [Φ] the set of coarse Lyapunov
weights for a. Recall also that, for any [α] ∈ [Φ], G[α] denotes the coarse Lyapunov subgroup
corresponding to [α], namely the unipotent subgroup whose Lie algebra is g[α] =

⊕
α′∈[α] g

α′
.

Fix again a non-trivial element a0 ∈ A, and denote by Ψa0 the set of Lyapunov weights whose
associated coarse Lyapunov subgroups are contained in the stable horospherical subgroup G−

a0
;

formally,

Ψa0 = {α ∈ Φ : G[α] < G−
a0
} .

One of the cornerstones of the use of leafwise measures in the work on higher-rank rigidity
by Einsiedler and Katok [9], Einsiedler and Lindenstrauss [17] as well as Einsiedler, Katok and
Lindenstrauss [10] is the product structure of leafwise measures discussed in [9].

Theorem 5.5 (Product structure [9, Thm. 8.4]). Let {αi : i = 1, . . . , ℓ} ⊆ Φ be pairwise
inequivalent Lyapunov weights for a such that Ψa0 = {[αi] : i = 1, . . . , ℓ}. Let U ≤ G−

a0
be a

Zariski connected A-normalized subgroup. For every i = 1, . . . , ℓ define Ui = U ∩G[αi], and let
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ϕ :
∏ℓ

i=1 Ui → U be given by ϕ(u1, . . . , uℓ) = u1 · · ·uℓ. Then ϕ is a homeomorphism. Moreover,
one has

µUx ∝ ϕ∗
(
µU∩G[α1]

x × · · · × µU∩G[αℓ]

x

)
for µ-a.e. x ∈ X .

The product structure of the leafwise measures is relevant to our purposes in that it provides
the following corollary, of which we sketch a proof.

Corollary 5.6. Let µ be an a-invariant probability measure on X = Γ\G. Let α1, · · · , αl ∈ Ψa0

be pairwise inequivalent Lyapunov weights such that Ψa0 = {[αi] : i = 1, . . . , l}. Let U ≤ G−
a0

be
a Zariski connected, a-normalized subgroup. Then the entropy contribution of U is given by

hµ(a0, U) =
l∑

i=1

hµ(a0, U ∩G[αi]) .

Proof. Let

µ =

∫
X

µE
xdµ(x)

be an ergodic decomposition of µ with respect to the map Ta0 . Then the entropy contribution
of U satisfies

hµ(a0, U) =

∫
X

hµEx(a0, U)dµ(x),

where for any ergodic probability measure ν invariant under Ta0 (in particular, for any µE
x) we

have

hν(a0, U) = lim
n→∞

−
log νUy (θ

n
a0
(V ))

n
for ν-almost every y ∈ X, where V ⊂ U is an arbitrary bounded neighborhood of the identity.
The previous equality holds since the function on the right-hand side is essentially Ta0-invariant,
and thus constant ν-almost everywhere by ergodicity (equal to its average over the whole
space). As a consequence of the first assertion in Theorem 5.5, we may choose V of the form
V = V1 · · ·Vl, where Vi is a neighborhood of the identity in the subgroup U ∩ G[αi] for each
i = 1, . . . , l. The product structure of leafwise measures (cf. Theorem 5.5) readily delivers

hν(a0, U, y) =
l∑

i=1

hν(a0, U ∩G[αi], y)

for µ-almost every y ∈ X, from which the corollary follows. □

6. The high entropy method and an inequality for entropy contribution

We preserve the same setup and notation of the previous section: G < G(QS) is an S-
algebraic group, Γ < G an S-arithmetic subgroup, X = Γ\G, A < G a class-A′ subgroup,
a0 ∈ A \ {eG}, G−

a0
the stable horospherical subgroup defined by a0, Φa0 the set of Lyapunov

weights α for A satisfying α(a0) < 0.

6.1. The high-entropy method. The following result is one of the essential tools needed in
the Section 7 in order to prove unipotent invariance.

Theorem 6.1 ([9, Thm. 8.5]). Let d ≥ 2 be an integer, a : Zd → G be a class-A′ homomorphism,
A = a(Zd), µ an A-invariant and ergodic probability measure on X = Γ\G, a0 ∈ A \ {eG}.
Then, there exists Zariski connected, A-normalized subgroups H < P of G−

a0
such that the

following hold.

(1) the support of µ
G−

a0
x is contained in P for µ-almost every x ∈ X.

(2) µ
G−

a0
x is bi-invariant under H.
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(3) H is normal in P , and if α, β ∈ Φa0 are coarsely inequivalent and gα ∈ P ∩ G[α],
gβ ∈ P ∩G[β], then gαH and gβH commute in P/H.

(4) µG
[α]

x is bi-invariant under H ∩G[α] for all α ∈ Φa0.

Remark 6.2. Note that, as stated in [9], the subgroups H and P a priori depend on the
basepoint x. Using the class-A′ assumption and ergodicity of A acting on (X,µ), one finds
by [73, Prop. 2.1.11] that the Lie algebras are µ-almost surely constant and therefore Zariski-
connectedness of H and P implies the result as stated above.

6.2. Entropy rigidity. The second method by which we obtain additional invariance is as
follows. We fix a compact metric space Ω with a Zd-action and consider the diagonal action ã
of Zd on Z × Ω. We recall the following result stated in [70, Rem. 2.5].

Proposition 6.3. There exist a subgroup Σ < Zd of finite index and a sequence of pairwise
distinct, Σ-normalized subgroups

{id} = R0 ◁ · · ·◁Rs = Ru(QS)

such that the following are true.

(1) For all 1 ≤ i ≤ s the group Ri/Ri−1 is abelian.
(2) For all 0 ≤ i ≤ s the group Λ ∩Ri < Ri is a lattice.
(3) For all 1 ≤ i ≤ s the action of Σ on Fi = Ri/(Λ ∩ Ri)Ri−1 is irreducible. That is, for

every finite index subgroup Σ′ < Σ there are no proper infinite closed invariant subgroups
of Fi.

For what follows, we fix a sequence {Ri}si=1 and a subgroup Σ < Zd as in Proposition 6.3.
We denote by ai,ab the induced action of Σ on Fi and we let λi (or λ, when the index is clear
from context) denote the Haar measure on Fi.

We let Ri act on Zi−1 = Z/Ri−1 and we note that the orbit of any G-translate of the identity
coset identifies with Fi. We equip Zi with the push forward µi of µ under the quotient map.
This way we obtain a sequence of factors Zi−1 → Zi. By the Abramov-Rokhlin summation
formula, for all n ∈ Σ we have

hµ
(
a(n)

)
=

s−1∑
i=0

hµ
(
ai(n)|Zi+1

)
,

where ai denotes the induced action of Σ on Zi.
For the remainder of this section, we fix an element n0 ∈ Σ \ {0}. As mY is a measure of

maximal entropy, we know from the Abramov-Rokhlin formula (7.1) that there exists a minimal
0 ≤ i∗ < s such that

hµ
(
ai∗(n0)|Yi∗+1

)
> 0.

In what follows, we denote by ã the diagonal action of Σ on Z × Ω and we assume that µ̃ is
a Σd-invariant measure on Z × Ω.

Theorem 6.4. We have hλ
(
ai∗,ab(n0)

)
> 0. Moreover, let U < H−

n0
be a Zariski-closed a(n0)-

normalized subgroup, then

hµ̃
(
ã(n0), U |Zi∗+1 × Ω

)
≤
hλ
(
ai∗,ab(n0), U ∩Ri∗+1

)
hλ
(
ai∗,ab(n0)

) hµ̃
(
ã(n0)|Zi∗+1 × Ω

)
.

Proof. We show that

hµ̃
(
ã(n0), U |Zi∗+1 × Ω

)
= hµ̃

(
ã(n0), U ∩Ri∗+1|Zi∗+1 × Ω

)
.

To this end we recall that

hµ̃
(
ã(n0), U |Zi∗+1 × Ω

)
= Hµ̃

(
C̃U |ã(n0)

−1C̃U ∨ B̃i∗+1

)
,
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where C̃U is a countably generated, ã(n0)-decreasing, U -subordinate σ-algebra on Z × Ω, and
B̃i∗+1 = Bi∗+1 ⊗ BΩ for BΩ the Borel σ-algebra on Ω and Bi∗+1 the preimage of the Borel σ-
algebra on Zi∗+1 under the canonical projection Z → Zi∗+1. Note that the atoms of BΩ are
singletons and the atoms of Bi∗+1 are Ri∗+1-orbits. As U acts trivially on Ω, we have that
C̃U = CU ⊗ BΩ, where CU is a countably generated, a(n0)-decreasing, U -subordinate σ-algebra
on Z.The σ-algebra B̃i∗+1 is ã(n0)-invariant. In particular, we have

hµ̃
(
ã(n0), U |Zi∗+1 × Ω

)
= Hµ̃

(
C̃U ∨ B̃i∗+1|a(n0)

−1C̃U ∨ B̃i∗+1

)
= Hµ̃

(
C̃U ∨ B̃i∗+1|a(n0)

−1(C̃U ∨ B̃i∗+1)
)

Note that for all z ∈ Z we have

[z]CU∨Bi∗+1
= [z]CU ∨ [z]Bi∗+1

= [z]CU ∩ zRi∗+1

and therefore CU ∨ Bi∗+1 is U ∩Ri∗+1-subordinate. Now we proceed like in [18]. □
Lemma 6.5 (cf. [18, Lem. 7.2]). In the notation introduced above, assume that µ̃ projects to
µ. Let [χ] be a coarse Lyapunov exponent for Fi∗+1. Then there is κµ̃,Ω,[χ] ≥ 0 such that for all
n ∈ Σ

hµ̃
(
ã(n), H [χ]|Zi∗+1 × Ω

)
= κµ̃,Ω,[χ]hλ

(
ai∗,ab(n), H

[χ]
)
.

Proof. The argument is verbatim as in [18]. Positivity of cλ follows by the maximal entropy
assumption. □
Lemma 6.6 (cf. [18, Lem. 7.3]). In the notation introduced above, assume that µ̃ projects to
µ. Let [χ] be a coarse Lyapunov weight for Z. Then

hµ̃
(
ã(n0), H

[χ] ∩Ri∗ |Zi∗+1 × Ω
)
= 0.

Moreover, if [χ] is not a coarse Lyapunov weight for Fi∗+1, then

hµ̃
(
ã(n0)|Zi∗+1 × Ω

)
= 0.

Combining all the above with the product structure, we find the following theorem.

Theorem 6.7. In the notation above, assume that µ̃ projects to µ. There exists κµ̃,Ω > 0 such
that

hµ̃
(
ã(n), H [χ]|Zi∗+1 × Ω

)
= κµ̃,Ωhλ

(
ai∗+1,ab(n), H

[χ] ∩Ru(QS)
)
.

7. Producing additional unipotent invariance

This section is devoted to showing that a Zd-invariant and ergodic joining µ of mX and mY ,
as in the statement of Theorem 1.3, has in fact to exhibit some additional unipotent invariance.
This will crucially enable us to resort to Proposition 1.4 in order to show triviality of µ. The
latter part of the argument will be carried out in detail in the next section.

Notation and setup. We briefly recall the setup for our main result (cf. Theorem 1.1), which
will be fixed until the end of the paper. Let B,G be respectively solvable and perfect connected
linear algebraic groups defined over Q, S a finite set of places of Q containing the infinite place.
Let G < G(QS) and B < B(QS) S-algebraic groups Assume Γ < G and Λ < B are S-arithmetic
subgroups, and denote by X = Γ\G and Y = Λ\B the corresponding S-arithmetic quotients.

We further let aG : Zd → G, aB : Zd → Λ be two class-A′ homomorphisms, where d ≥ 2
is an integer. Then Zd acts measure-preservingly on X with respect to the Haar measure
mX via n · Γg = ΓgaG(−n), for n ∈ Zd and g ∈ G; similarly there is an induced Zd-action
on Y , and we fix a Zd-invariant probability measure mY of maximal entropy with respect to
the action of aB(Zd). Denote by a =: Zd → G × B the diagonal homomorphism defined by
a(n) =

(
aG(n), aB(n)

)
for all n ∈ Zd, and finally let µ be a Zd-invariant and ergodic joining
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of mX and mY on the product space X × Y , which we identify canonically with the quotient
∆\H, where H = G×B and ∆ = Γ× Λ.

As already mentioned, we set out to prove the following theorem.

Theorem 7.1 (Unipotent invariance). Suppose the assumptions in Theorem 1.1 hold, and let
notation be as above. Then, there exists a non-trivial Zariski connected unipotent subgroup
U < H generated by one-parameter unipotent subgroups and normalized by a(Zd) < H such
that µ is invariant under U .

In what follows, we denote by ΨX and ΨY the set of non-trivial coarse Lyapunov weights
associated to aG and aB respectively. We have to distinguish between two cases, namely either
ΨX = ΨY or ΨX ̸= ΨY .

7.1. Case 1: the Lyapunov weights do not match. This case is considerably easier to deal
with and more general: unipotent invariance is established through a version of the Abramov-
Rokhlin formula for conditional entropy; cf. [51, Sec. 6.1]. Also, we crucially use that for any
[α] ∈ ΨX ∪ΨY we have

H [α] = G[α] ×B[α],

the verification of which is purely formal and hence left to the reader. Note that the argument
to follow does not rely on any higher rank assumption on aG or aB. Specifically, we obtain the
following corollary to [17, Prop. 6.5]:

Corollary 7.2. Let α : Zd → R be such that [α] ∈ (ΨX \ΨY )∪ (ΨY \ΨX). Then the joining µ
is invariant under the subgroup H [α], which is a non-trivial, Zariski closed, connected unipotent
subgroup of H.

Proof. For simplicity, assume [α] ∈ ΨY \ΨX ; the other case is exactly analogous.
Let N = G× {e} ⊂ H be the subgroup defined as the image of the canonical embedding of

G in H, and denote by π : H → H/N ≃ B the canonical projection. Clearly, ∆ ∩ N ≃ Γ is a
lattice in N . It follows from [17, Prop. 6.5] that, for each n ∈ Zd,

hµ
(
a(n), H [α]

)
= hmY

(
aB(n), B

[α]
)
+ hµ

(
a(n), H [α] ∩N

)
. (7.1)

Since [α] /∈ ΨX , we have H [α] = {e} × B[α] and the group H [α] ∩ N is trivial. Therefore, the
second summand in (7.1) vanishes and

hµ
(
a(n), H [α]

)
= hmY

(
aB(n), B

[α]
)
.

Furthermore, we note that

hµ
(
a(n), H [α]

)
= hmY

(
aB(n), B

[α]
)
, (7.2)

as any H [α]-subordinate σ-algebra on X × Y is of the form BX ⊗ A, where BX is the Borel
σ-algebra on X and A is a B[α]-subordinate σ-algebra on Y .

As mY is a measure of maximal entropy, it follows that hµ
(
a(n), H [α]) is maximal; by virtue

of [16, Thm. 7.9], this implies that µ is H [α]-invariant. It was already shown in Section 3.1 that
H [α] is unipotent, Zariski closed, and connected. □

7.2. Case 2: the Lyapunov weights match perfectly. The second case, in which the
Lyapunov weights for aG and aB coincide, is more involved; the proof of invariance of µ under
a unipotent subgroup relies here on the high entropy method and on rigidity of the entropy
function outlined in Section 6. Our treatment follows [17, Sec. 7] and [18, Sec. 7] verbatim, up
to minor modifications required to fit our setup.
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Denote by ΦH the set of Lyapunov weights for the homomorphism a : Zd → H, and by ΨH

the corresponding set of coarse Lyapunov weights. As explained in [17, Sec. 7.2], we may assume
that there exists n ∈ Zd \ {0} and some α0 ∈ ΦH such that α0(n) = 0. We also define

P− =
∏

[α]∈ΨH , α(n)<0

P [α] and P+ =
∏

[α]∈ΨH , α(n)>0

P [α] ,

where P [α] < H [α] is the minimal Zariski-closed, connected subgroup of H [α] such that
suppµH

α

z ⊂ P [α] for µ-almost every z ∈ ∆\H. Then P− is the minimal Zariski-closed sub-
group of

H− = {h ∈ H : a(n)kha(−n)k → eH as k → ∞}
containing suppµH

−
z for µ-almost every z ∈ ∆\H. An analogous statement holds for P+ (with

respect to H+ defined changing the roles of a(−n) instead of a(n)).
The discussion now splits into two cases, depending on whether P [α0] centralizes both P−

and P+, in which case we invoke rigidity of the entropy function (cf. [18, Sec. 7]; otherwise, we
appeal to the high entropy method (cf. [8–10]).

Invariance via the high entropy method. We first discuss the case in which P [α0] does not
centralize either P− or P+. The argument being the same for both cases, we assume without
loss of generality that P [α0] does not commute with P−. Using the higher rank assumption, we
can choose n0 ∈ Zd such that α0(n0) < 0 and

α(n) < 0 =⇒ α(n0) < 0 for all α ∈ ΦH ,

that is, α(n0) < 0 for all α appearing in the definition of P−. Letting a = a(n0), we have that
H [α0] ∪ P− ⊂ H−

a . We let H0 ◁ P0 < H−
a be the Zariski connected, a-normalized subgroups

from Theorem 6.1; hence, for µ-almost all z ∈ ∆\H, we have that suppµH
−
a

z ⊂ P0, µ
H−

a
z is

H0-invariant, and µ
H[α]

z is H0∩H [α]-invariant. Moreover, we know that for inequivalent weights
α, β ∈ Φa and hα ∈ P0 ∩H [α], hβ ∈ P0 ∩H [β], we have [hα, hβ] ∈ H0. We know from Theorem
5.5 that

µH
−
a

z ∝
∏

[α]∈ΨH :α(n0)<0

µH
−
a ∩H[α]

z ∝
∏

[α]∈ΨH :α(n0)<0

µH
−
a ∩P [α]

z

and thus from Theorem 6.1 that for µ-almost every z ∈ ∆\H the measure µH
−
a

z is bi-invariant
under the group generated by all commutators [h1, h2] ∈ H0 with h1 ∈ H [α0] and h2 ∈ H [α] for
α ∈ ΦH \ [α0] such that α(n0) < 0. Notice that [h1, h2] ∈ H−

a ; as P
[α0] does not commute with

P−, we have found a non-trivial Zariski-closed unipotent subgroup U < H0 < H such that µ is
U -invariant.

Invariance via rigidity of the entropy function. It remains to deal with the case where
P [α0] commutes with both P− and P+. We fix a coarse Lyapunov weight [α] occuring in the
definition of P−, say, and we define Ω to be the space of equivalence classes of locally finite
Radon-measures on U = P [χ] ∩ Ru(QS) which are integrable for some suitably chosen non-
negative measureable function f . The space Ω then becomes a compact metric space and for
the right choice of f we find that x 7→ [µUx ] has image in Ω for µ-almost everywhere. We let Zd
act trivially on Ω.

Proposition 7.3. In the notation of Theorem 6.7, we have κµ̃,Ω = κµ, where κµ := κµ̃,{·}.

Proof. Here we use that P [α0] commutes with P− to adapt the proof of [18, Prop. 7.5] verbatim.
□

In combination with the product structure, we obtain the following corollary.
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Corollary 7.4. Fix n ∈ Zd and a coarse Lyapunov weight χ satisfying χ(n) < 0. Let W =
H [χ] ∩ Ru(QS). For any subset Z ′ ⊆ Z of full measure, there exist z ∈ Z ′ and w ∈ W \ {id}
such that zw ∈ Z ′ and µWz ∝ µWzw.

From here one can deduce additional invariance as outlined in [18, §7].

Conclusion. To sum up the result of this section, we have obtained that our joining µ is
invariant under the subgroup ⟨U, a(Zd)⟩ ≃ U ⋊ a(Zd) generated by the unipotent subgroup U
and the diagonalizable subgroup a(Zd). Observe in addition that, since we are assuming from
the outset that µ is ergodic under the action of a(Zd), it is a fortiori ergodic for the action of the
bigger group ⟨U, a(Zd)⟩. This brings us in a position to apply the measure classification result
in Proposition 1.4, which alongside the joining structure of µ will lead us to the conclusion of
the proof of Theorem 1.1.

8. Disjointness: proof of the main theorem

The final section of this article is consecrated to the proof of Theorem 1.3, from which the
more general Theorem 1.1 follows as explicated in Section 4.2.

Let thus µ be a Zd-invariant and ergodic joining of mX and mY on X × Y ≃ ∆\H. We may
assume additional unipotent invariance of µ, which has been established in Theorem 7.1; more
precisely, µ is invariant under a non-trivial subgroup U < H generated by one-parameter unipo-
tent subgroups and normalized by the class-A′ group A = a(Zd). In view of Proposition 1.4,
there exists a Zariski-connected algebraic Q-subgroup L < G of class F , a finite-index subgroup
L < L(QS) and an element h0 = (g0, b0) ∈ H, with ∆h0 ∈ suppµ, such that U < h−1

0 Lh0,
µ is invariant under h−1

0 Lh0 and is concentrated on the orbit ΓN1
H(L(QS))h0, where we recall

that N1
H(L(QS)) is the set of elements in H normalizing L(QS) whose action by conjugation

preserves the Haar measure on it. Let µ′ be the push-foward under of µ under the action
of h0. Then µ′ is an A′-invariant and ergodic joining of mX and mY , where A

′ = h0Ah
−1
0 ;

furthermore, µ′ is invariant under L and concentrated on the N1
H(L(QS))-orbit of the identity

coset ∆ ∈ ∆\H. Postcomposing the homomorphism a with conjugation by h0 doesn’t alter the
properties of aG and aB; therefore, just as before, we may assume without loss of generality
that h0 is the identity element of H, upon replacing µ by µ′.

We now make use of the joining assumption to pin down the algebraic structure of the nor-
malizer NH(L) of L inside H. Recall that the projection of any Zariski-connected Q-subgroup
of H onto each of the factors G and B is a Zariski-connected Q-group ([65, Prop. 2.2.5]).

Proposition 8.1. Let πG : H → G deote the canonical projection map. Then πG(NH(L)) = G.

Proof. Since µ(∆N1
H(L(QS))) = 1 and N1

H(L(QS)) < NH(QS)(L(QS)) = (NH(L))(QS), it fol-
lows by projecting onto X that the orbit of the identity coset Γ ∈ X under the closed pro-
jection G ∩ πG(NH(L))(QS) of the group H ∩ NH(L)(QS) to G has full mX-measure. As
shown in [64, Lem. 2.2], this implies that such orbit is the full space X. Lattices in second
countable topological groups being at most countable, it follows that G ∩ πG(NH(L))(QS) has
at most countable index in G, and the same holds true for πG(NH(L))(QS) in G(QS), since
G has finite index in G(QS). This delivers πG(NH(L)) = G, as desired; otherwise, since G
is Zariski-connected, a proper inclusion πG(NH(L)) ⪇ G would force the quotient Q-variety
G/πG(NH(L)) to have strictly positive dimension (cf. [65, Cor. 5.5.6]), contradicting the fact
that its set of QS-points is at most countable. □

At this point, we need to recall Goursat’s lemma ([26]) from abstract group theory:

Proposition 8.2 (Goursat’s lemma). Let G1, G2 be two groups, H a subgroup of G1 × G2

projecting surjectively onto both factors. Define

N1 = {g1 ∈ G1 : (g1, eG2) ∈ H}, N2 = {g2 ∈ G2 : (eG1 , g2) ∈ H},
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where eG1 , eG2 denote the identity elements of G1, G2, respectively. Then, Ni is a normal sub-
group of Gi, i = 1, 2, and the image of H under the canonical map G1 ×G2 → G1/N1 ×G2/N2

is the graph of an isomorphism ϕ : G1/N1 → G2/N2.

A consequence of Goursat’s lemma is that, if G1 and G2 have no non-trivial isomorphic
factors, then the only subgroup of G1 ×G2 projecting surjectively onto both factors is the full
direct product G1 ×G2. Since the classes of perfect and solvable groups are both closed under
taking quotients, and a non-trivial perfect group cannot be isomorphic to a solvable group, we
conclude:

Corollary 8.3. Let B′ be the projection of NH(L) to B. Then NH(L) = G×B′.

Replacing B by B′ if needed15, we may now assume that L is a normal Q-subgroup of H.

The upshot of the foregoing discussion is that the ergodic joining µ is invariant (up to
finite-index issues) under the group of QS-points of a non-trivial, normal Q-subgroup of H =
G × B. In case G is semisimple, Proposition 8.4 in the upcoming section, in conjuction with
the classification of normal algebraic subgroups of semisimple groups given in Corollary 2.3,
allows for a neat description of the whole range of possibilities for the group L. An inductive
argument on the number of simple factors of G and on the dimension of Ru(B) as an algebraic
variety leads to the conclusion of the proof, as explained in Section 8.1. In order to deal with the
general case of G perfect, we rely on an argument inspired by the statement, and by the proof,
of [17, Thm. 1.6]; this is carried out in Section 8.2, thereby achieving the proof of Theorem 1.3.

8.1. The case G semisimple. Throughout this subsection, G is assumed to be semisimple.
In this case, there is a simple description of all normal algebraic subgroups of the product
H = G×B: they all split as products of normal subgroups of the two factors:

Proposition 8.4. Let G,B be, respectively, a semisimple and a solvable Zariski-connected
linear algebraic group defined over Q, and let L < G × B be a Zariski-connected normal Q-
subgroup of class F . Then L = L1 × L2, where L1 < G and L2 < Ru(B) are Zariski-connected
normal Q-subgroups of G and B, respectively.

The proof of this proposition is straightforward; details are relegated to Appendix B.

The semisimple Q-group G is an almost direct product of its Q-almost simple factors
G1, . . . ,Gr (cf. Theorem 2.2); we assume first that r = 1, that is G is Q-almost simple.

We distinguish two cases: either L2 is trivial or it is not. Suppose first that L2 is non-trivial.
The group L2(QS) < L, which is contained in L since by Lemma 2.5 unipotent groups do not
admit any proper finite-index subgroup, acts with compact orbits on X × Y 16; let q denote the
canonical projection H → H/(L2(QS)).

The proof of the following lemma is immediate from Propositions 5.3 and 5.4.

Lemma 8.5. The projection q∗µ of µ to the quotient homogeneous space ∆\H/L2(QS) has

maximal entropy for the homomorphism Zd a−→ H
π−→ H/L2(QS), where π is the canonical

projection map.

By virtue of Proposition A.7, we might harmlessly replace µ by its projection onto the double
quotient ∆\H/L2(QS); on account of Lemma 8.5, this projection is a measure satisfying all our
current assumptions, with B replaced by B/L2. If Theorem 1.3 is shown to hold for such a
projection, then it holds for µ as well, as the conclusion of Proposition A.7 shows.

15Observe that Propositon 1.4 furnishes, in particular, that A is contained in N1
H(L(QS)), hence in the larger

group H ∩ (G×B′)(QS).
16The orbit of the identity coset is compact since L2 is unipotent and hence clearly anisotropic over Q

(cf. [40, Thm. 3.2.4(b)]); the same property transfers immediately to all other orbits, which are obtained by
translation of the identity orbit, for L2(QS) is normal in H = G×B.
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Therefore, we are left to deal with the case L = L1. The subgroup L < G is a non-trivial
Zariski-connected normal Q-subgroup of the Q-almost simple group G, so that necessarily
L = G. The projection L1 of the finite-index subgroup L < L(QS) onto G is a finite-index
subgroup of G; we identify it with its isomorphic copy inside H = G×B, and recall that µ is,
in particular, invariant under L1.

Remark 8.6. At this point, knowing in addition that L1 = G would readily yield the conclusion
µ = mX ×mY . This is a consequence of the following general observation: if R is a (abstract)
group acting by measurable transformations of measurable space X, Y is a second measurable
space, µ is a probability measure on X × Y invariant under the R-action r · (x, y) = (r · x, y),
and the projection ρ of µ to X is the unique R-invariant probability measure on X, then17

µ = ρ× ν, where ν is the projection of µ to Y .
The general case of a finite-index subgroup L1 < G requires an ergodic-decomposition ar-

gument, as outlined below; we shall make use, in particular, of a slight generalization of the
previous observation, stated in Proposition 8.7.

Let AL1 = {a = (a1, a2) ∈ A < G× B : a1 ∈ L1}; as L1 has finite index in G, AL1 has finite
index in A, which, together with the fact that A is commutative and normalizes L1, implies that
AL1L1 is a normal subgroup of finite index of the locally compact18 group AL1. The quotient
AL1/AL1L1 is a finite abelian group (isomorphic to a quotient of A/AL1). Proposition 4.6 gives
thus that

µ =
1

[AL1 : AL1L1]

∑
aAL1

L1∈AL1/AL1
L1

a∗µ0 (8.1)

is an AL1L1-ergodic decomposition of the AL1-invariant and ergodic measure µ, where µ0 is a
given AL1L1-ergodic component of µ. Projecting (8.1) to X, we obtain that

mX =
1

[AL1 : AL1L1]

∑
(a1,a2)AL1

L1∈AL1/AL1
L1

(a1)∗(πX)∗µ0

is a πG(AL1L1)-ergodic decomposition of mX , where πG : G×B → G is the canonical projection
onto the first factor. On the one hand, observe that πG(AL1L1) = L1, by definition of AL1 ; on
the other hand, notice that πG(AL1) acts ergodically with respect to mX on X, being a finite-
index subgroup of aG(Zd) (cf. Remark 1.2). A fortiori, the larger subgroup L1 acts ergodically
with respect to mX . Uniqueness of the ergodic decomposition thus forces mX = (πX)∗µ0.

The following proposition allows to deduce that µ0 = mX×(πY )∗µ0. We formulate and prove
it in the utmost generality:

Proposition 8.7. Let X,Y be standard Borel spaces, R a locally compact group acting mea-
surably on X, and trivially on Y . Let µ be a probability measure on X × Y , which is invariant
under the diagonal action of R on the product. Suppose R acts ergodically on X with respect
to the R-invariant measure ρ = (πX)∗µ. Then µ = ρ× ν, where ν is the projection of µ to Y .

Proof. Upon choosing topological models (cf. Section 4.1) for the two actions, we may assume
that X, Y are compact metrizable spaces on which R acts continuously. Let (Z, λ) ∋ z 7→
µz ∈ M1(X × Y ) be an R-ergodic decomposition of µ. Then z 7→ (πX)∗µz is an R-ergodic

17By the monotone class lemma, it suffices to show that µ(E × F ) = ρ(E)ν(F ) for any measurable sets
E ⊂ X,F ⊂ Y . If ν(F ) = 0, then µ(E × F ) ≤ µ(X × F ) = ν(F ) = 0, thus equality holds. If ν(F ) > 0; the
probability measure ρF on X defined by ρF (E) = µ(E × F )/ν(F ), for any measurable E ⊂ X, is R-invariant
by R-invariance of µ and the fact that R acts trivially on Y . This forces ρF = ρ, that is µ(E × F ) = ρ(E)ν(F )
for any measurable E ⊂ X.

18Here the group AL1 is meant to be endowed with the final topology for the product map A× L1 → AL1,
where L1 has the induced topology from G and A is equipped with the discrete topology.
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decomposition of ρ and z 7→ (πY )∗µz is an R-ergodic decomposition of ν. The assumptions on
the measure-preserving R-actions on (X, ρ) and (Y, ν) imply that

for λ-almost every z ∈ Z, (πX)∗µz = ρ and (πY )∗µz = δy(z) for some y(z) ∈ Y ,

where the assignment z 7→ y(z) satisfies ν =
∫
Z
δy(z)dλ(z). As a consequence, µz = ρ× δy(z) for

λ-almost every z ∈ Z, and an application of Fubini’s theorem gives

µ =

∫
Z

µz dλ(z) =

∫
Z

ρ× δy(z)dλ(z) = ρ×
∫
Z

δy(z)dλ(z) = ρ× ν,

as desired. □
We may now conclude, by virtue of Proposition 8.7, that

µ =
1

[AL1 : AL1L1]

∑
(a1,a2)AL1

L1∈AL1/AL1
L1

(a1)∗mX × (a2)∗(πY )∗µ0

=
1

[AL1 : AL1L1]

∑
(a1,a2)AL1

L1∈AL1/AL1
L1

mX × (a2)∗(πY )∗µ0

= mX ×
(

1

[AL1 : AL1L1]

∑
(a1,a2)AL1

L1∈AL1/AL1
L1

(a2)∗(πY )∗µ0

)
= mX ×mY ,

where the last equality follows by projecting (8.1) to Y .

To recap, we have proven Theorem 1.3 in the case G is Q-almost simple. Now suppose
inductively that the statement holds for any semisimple Q-group with s ≤ r − 1 Q-almost
simple factors, and assume that G has r Q-almost simple factors G1, . . . ,Gr. As before,
we may assume that L = L1 is a non-trivial normal Q-subgroup of G, up to replacing H
with H/L2 = G × (B/L2) and using Proposition A.7. By Corollary 2.3, L1 is an almost-
direct product of some of the Q-almost simple factors of G. If L1 = G, the argument in
the Q-almost simple applies unaffectedly; upon rearrengement of the factors, we may thus
assume that L1 = Gs+1 · · ·Gr for some 1 ≤ s ≤ r − 1, and denote G′ = G1 · · ·Gs. Let
GL = G ∩ L1(QS),ΓL = Γ ∩ GL, XL = ΓL\GL; also, set G

′ to be the projection of G onto
G′(QS), Γ

′ the image of Γ under the same projection map, and X ′ = Γ′\G′.
The projection µ̃ of µ to X ′ × Y is a Zd-invariant and ergodic joining of mY and the Haar

measure mX′ on X ′, where Zd acts on X ′×Y via the projected homomorphism Zd a→ G×B →
G′ × B, which we denote ã. It is clear that µ̃ and ã fulfill the assumptions of Theorem 1.3;
as X ′ is an S-arithmetic quotient of the group G′, having s ≤ r − 1 Q-almost simple factors,
the induction hypothesis permits to deduce that µ̃ = mX′ × mY . Therefore, µ is a measure
on the product (X ′ × Y )×XL, projecting to mX′ ×mY onto X ′ × Y and invariant under the
finite-index subgroup L1 = L ∩ GL < GL. Just as in the case of a Q-almost simple group G,
define AL1 = {(a′1, aL1 , a2) ∈ A < G′ × GL × B : aL1 ∈ L1}, and consider an AL1L1-ergodic
decomposition of µ. Arguing as before, it can be inferred that L1 acts ergodically on XL with
respect to mXL

, and Proposition 8.7 delivers once more µ = (mX′ × mY ) × mXL
, that is,

rearranging factors, µ = mX ×mY .

Remark 8.8. For the sake of emphasizing the gist of the above argument, we are tacitly
assuming that G is a direct product of its Q-almost simple factors and X splits neatly as the
product XL × X ′. This allows for a direct application of Proposition 8.7. If G is not simply
connected, Proposition A.7 provides an adequate replacement: combining L-invariance of µ
with the fact that its projection µ̃ modulo L equals mX′ × mY , it follows all the same that
µ = mX ×mY .
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8.2. The case G perfect. The case of a semisimple G being established, it is rather straight-
foward to deduce the result whenG is only assumed to be perfect. It essentially follows from the
Levi decomposition of a linear algebraic group, together with a classification result analogous
to [17, Thm. 1.6] and phrased in Proposition 8.10.

Assume thus that G is a Zariski-connected, perfect Q-group.

Lemma 8.9. Let G = Gss ⋉Ru(G) be a Levi decomposition of G.

(1) The Levi factor Gss is semisimple.
(2) If A1 < G(QS) is a diagonalizable subgroup, then A1 is contained in Gss(QS).

Proof. For the first assertion, observe that G = [G,G] < [Gss,Gss] ⋉ Ru(G), whence Gss is
necessarily equal to its commutator [Gss,Gss],which is semisimple (cf. Thm. 2.1).

As for the second statement, let a = (aσ)σ∈S be an element of A1; it suffices to show
that aσ ∈ Gss(Qσ) for every σ ∈ S. To this end, we work inside the groups of Qσ-points
of G,Gss and Ru(G), Qσ designating an algebraic closure of the field Qσ. Since G(Qσ) =

Gss(Qσ)⋉Ru(G)(Qσ), we have aσ = a
(Gss)
σ a

(U)
σ , for some a

(Gss)
σ ∈ Gss(Qσ), a

(U)
σ ∈ Ru(G)(Qσ).

The canonical projection G(Qσ) → Gss(Qσ), with kernel Ru(G)(Qσ), is a homomorphism of al-
gebraic groups, and as such it preserves the Jordan decomposition of elements ([65, Thm. 2.4.8]).

Because aσ is diagonalizable by assumption, it follows that a
(Gss)
σ is a diagonalizable ele-

ment in Gss(Qσ), thus a fortiori in G(Qσ). Uniqueness of the Jordan decomposition of an

element in G(Qσ) now forces a
(U)
σ = e, the identity element of the group G(Qσ); hence,

aσ = a
(Gss)
σ ∈ Gss(Qσ), as claimed in the statement. □

Fix thus a Levi decomposition G = Gss⋉Ru(G) of G. As a consequence of the proposition,
the image of the class-A′ homomorphism aG : Zd → G is contained in G ∩ Gss(QS). Denote
by Gss the finite-index subgroup of Gss(QS) given by the image of G under the canonical pro-
jection G(QS) → Gss(QS); since Ru(G)(QS) has no proper finite-index subgroups, G contains
Ru(G)(QS), so that G = Gss ⋉Ru(G)(QS). Furthermore, on the level of algebraic groups, the
projection G → Gss is defined over Q, hence (see [40, Lem. 3.1.3]) the image Γss of Γ under the
projection G → Gss is an S-arithmetic subgroup embedding diagonally as a discrete subgroup
of Gss; pushing forward the Haar-Siegel measure mX on X via the map Γ\G→ Γss\Gss yields
a Gss-invariant probability measure mXss on Xss = Γss\Gss.

Now let µ be a Zd-invariant and ergodic joining of mX and mY , as in the assumptions of
Theorem 1.3. The push-foward π∗µ of µ under the projection map π : X × Y → Xss × Y is a
Zd-invariant and ergodic joining of mXss and mY , where Zd acts on the product Xss×Y via the
projection of the homomorphism aG × aB : Zd → G×B to Gss×B. As Xss is an S-arithmetic
quotient of a semisimple Q-group, we know from Section 8.1 that π∗µ = mXs × mY . The
following result allows to conclude that µ = mX ×mY .

Proposition 8.10 (cf. [17, Thm. 1.6]). Let G = Gss ⋉ Ru(G), Gss,Γss and Xss be as above,
aG : Zd → G, aB : Zd → B homomorphisms satisfying the hypotheses of Theorem 1.3. Suppose
that µ is invariant and ergodic under the diagonal action of Zd on X × Y , and projects to the
product measure mXss ×mY on Xss × Y . Then µ = mX ×mY .

Throughout the proof, we tacitly make use of the following observation: for a given probability
measure µ on X × Y , the property of projecting to the Haar-Siegel measure on Xss × Y does
not depend on the choice of the Levi factor Gss of G, since any two different Levi factors are
conjugated inside G by an element of Ru(G)(Q) (cf. [53, Thm. 2.3]).

Proof. We argue by induction on the number of Q-simple factors of the Levi factor Gss. Recall
that, by the argument at the beginning of Section 8, µ is additionally invariant under a finite-
index subgroup L < L(QS), where L is a connected, normal Q-subgroup of G×B of class F .
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If L = Lss ⋉ Ru(L) is a Levi decomposition of L, then Lss is semisimple and contained in G,
and Ru(L) is contained in Ru(G × B) = Ru(G) × Ru(B) (cf. the proof of Proposition 8.4 in
Appendix B). By means of this decomposition, and using that the subgroup L is normal in
G×B, it is straightforward to realize that Lss is also a normal subgroup of G×B. Also, the
semisimple group Lss is contained in a Levi factor of G. Combining this with the fact that
Ru(G×B)∩Lss = Ru(Lss) is trivial

19, which in turn implies that Lss and Ru(G×B) commute, it
follows that there exists a semisimple Q-groupG′

ss < G such thatG = Lss×(G′
ss⋉Ru(G))×B;

for notational simplicity, denote byG′ the perfect Q-groupG′
ss⋉Ru(G). Corresponding to such

a decomposition on the level of algebraic groups, there is a decomposition of the homogeneous
space X × Y as a product XL × X ′ × Y , where XL = (Γ ∩ Lss(QS))\(G ∩ Lss(QS)) and
X ′ = (Γ ∩G′(QS))\(G ∩G′(QS)).

If the normal subgroup Ru(L) < G×B is non-trivial, we can turn our attention to the projec-
tion µ̄ of µ onto the quotient q(∆)\(G×B)/Ru(L)(QS), where q : G×B → (G×B)/Ru(L)(QS)
is the canonical projection. If µ̄ satisfies the conclusion of the proposition, then so does µ, as
explained in Appendix A.3; to this end, notice that Ru(L)(QS) acts with compact orbits on
X × Y (cf. footnote 16), so that in particular Proposition A.7 applies. Therefore, we might
assume that Ru(L) is trivial, so that L = Lss is non-trivial. In this case, the Levi factor G′

ss

of the perfect group G′ has fewer Q-simple factors with respect to Gss. If µ′ stands for the
projection of µ to X ′ × Y , then all the assumptions of the proposition are satisfied, with G re-
placed by G′, mX by mX′ and aG by its projection onto G′(QS); the induction hypothesis thus
yields µ′ = mX′ ×mY . Finally, since µ is invariant under a finite-index subgroup of Lss(QS),
we may again combine Proposition 8.7 with an ergodic-decomposition argument analogous to
the one in Section 8.1 to obtain that µ = mXL

× µ′, where mXL
is the Haar measure on XL.

Hence, we get µ = mXL
×mX′ ×mY = mX ×mY , which finishes the proof. □

The proof of Theorem 1.3 is concluded.

Appendix A. Some properties of lattices and measures on homogeneous spaces

We collect here various, mostly well-known statements, interspersed in the main body of
the manuscript and pertaining to lattices in locally compact groups and algebraic measures on
homogeneous spaces.

Keeping with our usual terminology, a locally compact group is intended to be a Hausdorff,
locally compact second countable topological group.

A.1. Projection of lattices.

Lemma A.1. Let G be a locally compact group, Γ < G a lattice, L,R < G closed subgroups
with R normal in G. Assume that the following two conditions hold:

(1) the image Λ ⊂ G/R of Γ under the natural projection q : G→ G/R is a lattice in G/R;
(2) the induced map π : Γ\G → Λ\(G/R) restricts to a surjective map on ΓL = {Γg ∈

Γ\G : g ∈ L}.
The the image q(L) has non-empty interior in G/R.

Proof. Missing. □

19In characteristic zero, every unipotent algebraic group is Zariski-connected, thus Ru(G × B) ∩ Lss

is connected. Therefore, the latter group is a connected normal unipotent subgroup of Lss, whence
Ru(Lss) ⊃ Ru(G × B) ∩ Lss. On the other hand, Ru(Lss) is invariant under all automorphisms of Lss,
hence in particular under the restriction of each inner automorphism of G×B to Lss; it follows that Ru(Lss)
is a connected, normal unipotent subgroup of G×B, so that Ru(Lss) ⊂ Ru(G×B) ∩ Lss.
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Lemma A.2. Let G be a locally compact group, R < G a closed, normal subgroup, Γ < G a
discrete subgroup. Let q : G→ G/R denote the canonical projection, Λ = q(Γ). Then

Λ\(G/R) ≃ Γ\G/R
as topological G/R-spaces.

Proof. We start by defining a map

π : Γ\G→ Λ\(G/R)
π(Γg) = Λ(gR).

In order to see that this is well-defined, we first note that for any two g, g̃ ∈ G we have

Λ(gR) = Λ(g̃R) ⇐⇒ ∃γ ∈ Γ γgR = g̃R.

Indeed, the left-hand side implies that there is some γ ∈ Γ such that (γR)(gR) = g̃R, and thus
in particular γgR = g̃R. The opposite direction follows similarly. Hence, if g, g̃ ∈ G satisfy
γg = g̃ for some γ ∈ Γ, then π(Γg) = π(Γg̃) as required.

To show that π is continuous, consider the diagram

G
p

yysss
sss

sss
ss

q

%%KK
KKK

KKK
KKK

Γ\G

π %%JJ
JJ

JJ
JJ

J
G/R

ϱyyttt
tt
tt
tt

Λ\(G/R)

(A.1)

and note that p is a local homeomorphism. Since locally we have π = ϱ ◦ q ◦ p−1, we obtain
that π is continuous.

Finally, we observe that the fibers of π are precisely the R-orbits in Γ\G, that is, π(Γg) =
π(Γg̃) for g, g̃ ∈ G if and only if there is some r ∈ R such that Γgr = Γg̃. To this end, assume
that π(Γg) = π(Γg̃); as argued above, this is equivalent to the existence of γ ∈ Γ such that
γgR = g̃R. Thus there is some r ∈ R such that γgr = g̃; it follows that Γg̃ = Γgr ⊆ ΓgR and
the fibers of π are therefore contained in R orbits. The fact that π is constant on R-orbits is
immediate. □
Proposition A.3. Let G be a locally compact group, Γ < G a lattice in G, K < G a compact
normal subgroup. Denote by π : G→ G/K the canonical projection map. Then π(Γ) is a lattice
in G/K.

Proof. We begin by showing that π(K) is discrete in G/K. Let γn ∈ Γ be such that the sequence
(π(γn))n converges towards the identity in G/K. This implies that there exists a sequence (kn)n
of elements of K such that γnkn → eG in G as n goes to infinity. Upon replacing (kn)n by a
converging subsequence (using that K is compact and G is metrizable), we may assume that
kn → k ∈ K. Thus, γn → k−1 ∈ K ∩ Γ; discreteness of Γ forces γn = k−1 for all n sufficiently
large, which shows that π(γn) is the identity eG/K in G/K for all such n. This argument shows
that eG/K is an isolated point in π(Γ), thereby proving that the latter is a discrete subgroup.

It remains to prove that the space of right cosets π(Γ)\(G/K) admits a G/K-invariant Borel
probability measure. As shown in Lemma A.2, π(Γ)\(G/K) ≃ Γ\G/K as G/K-spaces. Denote
by ρ : Γ\G → Γ\G/K the canonical projection; then ρ is a proper, open map. Indeed, for
every open set V ⊂ Γ\G, the set ρ−1(ρ(V )) = V K is open as union of translates of V , whence
ρ(V ) is open, since Γ\G/K carries the quotient topology defined by the map ρ. To prove that
ρ is proper, let L ⊂ Γ\G/K be a compact subset; we claim that there is a compact subset
M ⊂ Γ\G such that L = ρ(M). Indeed, choose for every x ∈ L a compact subset Vx ⊂ Γ\G so
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that ρ(Vx) is a neighborhood of x. By compactness of L, there is a finite subset X ⊂ Γ\G such
that

L ⊂
∪
x∈X

ρ(Vx)
◦ ,

and thus the set M = ρ−1(L) ∩
(∪

x∈X Vx
)
has the desired properties. This implies that

ρ−1(L) =MK is compact, proving that ρ is proper.
As a consequence, for every continuous, compactly supported function ψ : Γ\G/K → C, the

function ψ ◦ ρ is continuous and compactly supported on Γ\G. We can thus define the linear
functional µ : Cc(Γ\G/K) → C, which to each ψ ∈ Cc(Γ\G/K) assigns the value

µ(ψ) =

∫
Γ\G

(ψ ◦ ρ) dmΓ\G ,

where mΓ\G denotes the G-invariant Borel probability measure on Γ\G. The functional µ is
clearly positive, in the sense that ψ ≥ 0 implies µ(ψ) ≥ 0, and bounded in operator norm by 1;
Riesz representation theorem thus gives a Borel probability measure, again denoted by µ, such
that

µ(ψ) =

∫
Γ\G/K

ψ dµ for all ψ ∈ Cc(Γ\G/K).

We are left to show that µ is G/K-invariant. Fix h ∈ G and denote by ψhK ∈ Cc(Γ\G/K) the
function defined by

ψhK(ΓgK) = ψ(ΓghK) , g ∈ G.

Similarly, if f ∈ Cc(Γ\G), denote by fh the function defined by fh(Γg) = f(Γgh) for all g ∈ G.
Using this notation, we have

(ψhK ◦ ρ)(Γg) = ψ(Γgh) = (ψ ◦ ρ)h(Γg) for all g ∈ G,

so that

µ(ψhK) = mΓ\G((ψ ◦ ρ)h) = mΓ\G(ψ ◦ ρ) = µ(ψ) ,

where the equality in the middle follows by G-invariance of mΓ\G. The proof is concluded. □

A.2. Haar measure on finite volume orbits. Let G be a locally compact group, Γ < G a
lattice, X = Γ\G, H < G a closed subgroup, acting on X by right translation. Fix a point
x = Γg ∈ X and define

StabH(x) = {h ∈ H : h · x = x}.
There exists a continuous H-equivariant map

H/StabH(x) ∋ h StabH(x) 7→ h · x ∈ X, (A.2)

which is a bijection onto the H-orbit of x

H · x = {h · x : h ∈ H}.

An easy computation shows that StabH(x) = H ∩ g−1Γg, which is a discrete subgroup of H. If
Λ = H ∩g−1Γg is a lattice in H, then the H-orbit H ·x is closed in X (see [54, Thm. 1.13]), the
map in (A.2) is an homeomorphism onto H · x, and pushing forward the unique H-invariant
probability measure mH/Λ via this map yields an H-invariant Borel probability measure on
H · x, called the Haar measure on the H-orbit of x. A periodic H-orbit is an H-orbit carrying
an H-invariant Haar measure. Haar measures on orbits of intermediate subgroups are referred
to as algebraic or homogeneous measures.
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A.3. Invariant lifts of algebraic measures. This subsection characterizes measures on ho-
mogeneous spaces which are invariant under a normal subgroup and whose projection to the
corresponding quotient is an algebraic measure. This is used to reduce the proof of Theorem 1.1
to the case where there is some non-trivial unipotent invariance stemming from the semisimple
side (cf. Section 8.1), as well as to deduce algebraicity of joinings in the perfect case (cf. Sec-
tion 8.2). Let G be a locally compact group with identity element e, Γ < G a discrete subgroup.
We assume furthermore that R < G is a closed normal subgroup such that all R-orbits on the
homogeneous space Γ\G are periodic; since R is normal, it is equivalent to require the property
to hold for a single R-orbit, as any other orbit is then obtained by translation. For any closed
subgroup L < G and any periodic L-orbit L · x ⊂ Γ\G, we indicate with mL·x the unique
L-invariant measure carried by L · x. Denote by q : G → G/R the canonical projection and
suppose that Γ̄ := q(Γ) < G/R is discrete. It will be convenient to set Ḡ := G/R. We let
π : Γ\G→ Γ\G/R denote the projection as in Lemma A.2.

We start with a lemma concerning the topology of Γ\G/R:

Lemma A.4. For G,Γ, R as above, the double coset space Γ\G/R is Hausdorff, locally compact
and second countable.

Proof. It follows at once from the identification in Lemma A.2 and the analogous properties for
a quotient Λ\H, where Γ < H is a closed subgroup of a locally compact group H. □

Consequently, the double coset space Γ\G/R is as nice a space as required to apply Riesz’s
representation theorem and similar tools.

Next, we introduce the averaging operator over periodic R-orbits; this is instrumental in
formulating an analogue of Weil’s classical folding-unfolding formula (cf. [59, §3.2]) on Γ\G.

Lemma A.5. For every ψ ∈ Cc(Γ\G/R), there exists φ ∈ Cc(Γ\G) such that

ψ
(
π(x)

)
=

∫
R·x

φ(y)dmR·x(y) for every x ∈ Γ\G.

More precisely, the linear operator T : Cc(Γ\G) → Cc(Γ\G/R) defined by

Tφ
(
π(x)

)
=

∫
R·x

φ(y)dmR·x(y)

is positive, that is Tφ ≥ 0 whenever φ ≥ 0, and surjective.

Proof. We first prove that I : Cc(Γ\G) → C(Γ\G) defined by

Iφ(x) :=

∫
Γ\G

φ(y)dmR·x(y)

is well-defined and the image is constant on R-orbits. First we check that Iφ is continuous. We
may argue with sequences, as Γ\G satisfies the first axiom of countability. Let thus (xn)n∈N∪{∞}
be a sequence in Γ\G such that x∞ = limn→∞ xn. Fix (εn)n∈N ∈ GN such that εn → e and20

xn = x∞εn. We have

|Iφ(xn)− Iφ(x∞)| =
∣∣∣∣∫

Γ\G
φ(y)dmR·xn(y)− Iφ(x∞)

∣∣∣∣ = ∣∣∣∣∫
Γ\G

φ(y)d(εn)∗mR·x∞(y)− Iφ(x∞)

∣∣∣∣
=

∣∣∣∣∫
Γ\G

φ(yεn)dmR·x∞(y)− Iφ(x∞)

∣∣∣∣ = ∣∣∣∣∫
Γ\G

(
(εn · φ)− φ

)
(y)dmR·x∞(y)

∣∣∣∣
≤ ∥εn · φ− φ∥∞

n→∞−→ 0

20The existence of such a sequence (εn)n is ensured by the well-known fact that the projection G → Γ\G is
a local homeomorphism.
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by strong continuity of the Koopman representation of G on Cc(Γ\G) with respect to the
supremum norm; this in turn is a consequence of compactly supported continuous functions on
Γ\G being uniformly continuous.

It follows that there is a unique f ∈ C(Γ\G/R) such that Iφ = f ◦ π. We define Tφ := f .
Linearity and positivity of T are immediate from the definition. To show that Tφ has compact
support for any φ ∈ Cc(Γ\G), we prove that Tφ vanishes outside of π(suppφ). Let x ∈ Γ\G
such that π(x) ∈ (Γ\G/R) \ π(suppφ). Then r · x ̸∈ suppφ for any r ∈ R. Hence φ(r · x) = 0
for all r ∈ R, and thus Tφ

(
π(x)) = Iφ(x) = 0. This shows that suppTφ ⊆ π(suppφ) and

therefore Tφ ∈ Cc(Γ\G/R).
It remains to show that T is surjective. Assume that ψ ∈ Cc(Γ\G/R). Let C ⊆ G a

compact neighbourhood of e ∈ G. As suppψ is compact and π is an open map, there exist
x1, . . . , xn ∈ π−1(suppψ) such that {π(xiC) : 1 ≤ i ≤ n} covers suppψ. Define

K :=
∪

1≤i≤n

(
π−1(suppψ) ∩ xiC

)
,

which is a compact subset of Γ\G. It is clear that π(K) = suppψ. By means of Urysohn’s
lemma, choose f ∈ Cc(Γ\G) non-negative such that f

∣∣
K
> 0. Let ξ ∈ suppψ arbitrary. By

construction, there is some x ∈ K such that π(x) = ξ. As f is continuous and f(x) > 0,
there is a neighbourhood Vx ⊆ R containing e for which the map Vx ∋ r 7→ r · x ∈ R · x is a
homeomorphism and such that f |Vx·x > 0. Hence by positivity of f we get

Tf(π(x)) =

∫
Γ\G

f(y)dmR·x(y) ≥
∫
Vx

f(r · x)dr > 0,

which shows that Tf |suppψ > 0. Hence we define

φ(x) :=

{
(ψ ◦ π)(x) f(x)

Tf(π(x))
if x ∈ π−1(suppψ),

0 else.

It holds that suppφ ⊆ supp f , whence suppφ is compact. For x ∈ π−1(suppψ) we calculate

Tφ
(
π(x)

)
=

∫
Γ\G

(ψ ◦ π)(y) f(y)

(Tf ◦ π)(y)
dmR·x(y)

=

∫
Γ\G

(ψ ◦ π)(x) f(y)

(Tf ◦ π)(x)
dmR·x(y)

=
ψ
(
π(x)

)
Tf
(
π(x)

) ∫
Γ\G

f(y)dmR·x(y) = ψ
(
π(x)

)
and thus Tφ = ψ as desired. □

The following lemma elucidates the relationship between algebraic measures on the two spaces
Γ\G and Γ\G/R.

Lemma A.6. Let L̄ < G/R a closed subgroup, g ∈ G an element such that the orbit L̄ · Γ̄q(g)
is periodic. Set L = q−1(L̄). Then π(L · Γg) = L̄ · Γ̄q(g), the orbit L · Γg is periodic, and
mL̄·Γ̄q(g) = π∗mL·Γg.

Proof. The first part of the statement follows from the definition of π (cf. Lemma A.2) and the
fact that L̄ = q(L). For the last two assertions, we will assume without loss of generality that
G = L, in order to simplify notation, so that we are left to show that Γ\G admits a G-invariant
probability measure, given that Γ̄\Ḡ has a Ḡ-invariant probability measure mΓ̄\Ḡ. As before,
let mR·x be the unique R-invariant probability measure carried by the R-orbit R · x. Notice
that, for any g ∈ G and x ∈ X, it holds that mR·(g·x) = g∗mR·x, so that in particular the map
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x 7→ mR·x is continuous and constant on R-orbits. Let T : Cc(Γ\G) → Cc(Γ\G/R) be the linear
operator

Tφ
(
π(x)

)
=

∫
Γ\G

φ(y)dmR·x(y) (x ∈ Γ\G)

defined in Lemma A.5. Define a positive linear functional I on Cc(Γ\G) by

Iφ =

∫
Γ̄\Ḡ

Tφ dmΓ̄\Ḡ ∀φ ∈ Cc(Γ\G).

This corresponds to a Borel probability measure mΓ\G on Γ\G, which we claim is invariant
under G. Let g ∈ G and φ ∈ Cc(Γ\G), and extend the G-action to Cc(Γ\G) by setting
(g · φ)(x) = φ(g−1 · x), x ∈ Γ\G. We have

Tφ
(
q(g) · π(x)

)
= Tφ

(
π(g · x)

)
=

∫
Γ\G

φ(y)dmR·(g·x)(y) =

∫
Γ\G

φ(y)dg∗mR·x(y)

=

∫
Γ\G

φ(g · y)dmR·x(y) =

∫
Γ\G

(g−1 · φ)(y)dmR·x(y) = T (g−1 · φ)
(
π(x)

)
,

that is, q(g) · Tφ = T (g · φ).It follows that
mΓ\G(g · φ) = mΓ̄\Ḡ

(
T (g · φ)

)
= mΓ̄\Ḡ(Tφ) = mΓ\G(φ),

which ends the proof.
□

As a last preliminary step towards the proof of the announced result, notice that in the last
part of the foregoing proof we have shown the natural extension of Weil’s folding-unfolding
formula to our setup: ∫

Γ\G
φ dmΓ\G =

∫
Γ\G/R

Tφ dmΓ\G/R (A.3)

for every φ ∈ Cc(Γ\G).
Finally, we are in a position to show:

Proposition A.7. Let µ be an R-invariant probability measure on Γ\G and assume that π∗µ
is algebraic, that is, there exist a closed subgroup L̄ < G/R and an element ḡ ∈ G/R such that
π∗µ is the unique L̄-invariant measure supported on the orbit L̄ · Γ̄ḡ. Then, for L = q−1(L̄) and
g ∈ G any preimage of ḡ under q, µ is the unique L-invariant measure supported on L · Γg.

Proof. By virtue of Lemma A.6, we might assume without loss of generality that L̄ = Ḡ,
so that µ projects to the unique Ḡ-invariant probability measure mΓ\G/R on Γ̄\Ḡ = Γ\G/R.
We wish to deduce that µ = mΓ\G, the unique G-invariant probability measure on Γ\G. Let
T : Cc(Γ\G) → Cc(Γ\G/R) be as in Lemma A.5. It suffices to prove that∫

Γ\G
φ dµ =

∫
Γ\G/R

Tφ dmΓ\G/R for all φ ∈ Cc(Γ\G); (A.4)

if this holds, then by (A.3) µ andmΓ\G represent the same positive linear functional on Cc(Γ\G),
whence they are equal by uniqueness in the Riesz representation theorem.

Fix thus a function φ ∈ Cc(Γ\G); spelling out the integral on the right-hand side of (A.4),
we get ∫

Γ\G/R
Tφ dmΓ\G/R =

∫
Γ\G/R

∫
Γ\G

φ(y) dmR·x(y) dmΓ\G/R(π(x))

=

∫
Γ\G

∫
Γ\G

φ(y) dmR·x(y) dµ(x).

(A.5)
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where the last equality follows from the assumption π∗µ = mΓ\G/R. Now, for any x = Γg ∈ Γ\G,
we use that mR·Γg = (g−1)∗mR·Γ and write∫

Γ\G
φ(y) dmR·Γg(y) =

∫
Γ\G

φ(g−1 · y) dmR·Γ(y) =

∫
Γ\G

φ(g−1 · Γr) dmR·Γ(Γr).

Inserting this into (A.5) and interchanging the integrals via Fubini’s theorem, we obtain∫
Γ\G/R

Tφ dmΓ\G/R =

∫
Γ\G

∫
Γ\G

φ(Γrg) dµ(Γg) dmR·Γ(Γr)

=

∫
Γ\G

∫
Γ\G

φ(Γg(g−1rg)) dµ(Γg) dmR·Γ(Γr)

=

∫
Γ\G

(∫
Γ\G

φ(Γg) dµ(Γg)

)
dmR·Γ(Γr)

=

∫
Γ\G

φ dµ,

where the third equality stems from R-invariance of µ and the fact that R is a normal subgroup
of G. This achieves the proof of the proposition. □

Appendix B. Normal subgroups of products

This section is devoted to the proof of Proposition 8.4.

Proof of Proposition 8.4. We wish to show that any Zariski-connected normal subgroup L <
G ×B, where G and B are respectively semisimple and solvable Zariski-connected Q-groups,
takes the form L = L1 × L2, where L1,L2 are Zariski-connected normal Q-subgroups of G,B
respectively. Let L = Ls⋉Ru(L) be a Levi decomposition of L, with Ls a reductive Q-subgroup
of L. Since L is a normal subgroup ofG×B and the unipotent radical Ru(L) is a characteristic

21

subgroup of L, we deduce as a result that Ru(L) is a normal subgroup of G × B; being also
Zariski-connected and unipotent, it is contained in Ru(G × B) = Ru(B), the latter equality
holding as G has trivial unipotent radical. Set thus L2 := Ru(L).

On the other hand, we claim that the Levi subgroup Ls coincides with its commutator [Ls,Ls]
(hence it is semisimple). This is a consequence of the class-F assumption on L. Indeed, by the
structure theorem for reductive subgroups (see, for instance, [53, Thm. 2.4]), Ls is an almost
direct product of a Q-torus T and of the semisimple group [Ls,Ls]. If Ls ̸= [Ls,Ls], then by the
class-F assumption the group of QS-points of the quotient L/([Ls,Ls]Ru(L)) ≃ Ls/[Ls,Ls] ∼= T
has non-trivial unipotent elements. This is absurd. The projection of Ls to the solvable factor
B is thus necessarily trivial, so that Ls is contained in G and is a normal subgroup thereof.
Setting L1 := Ls permits us to conclude. □
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1984.
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